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1 Motivation

Interoperability between programming languages is a desirable feature in complex software systems.
While functions in scripting languages and virtual machine languages can be called in a dynamic man-
ner, statically compiled programming languages such as C, C++ and Objective-C lack this ability.

The majority of systems use C function interfaces as their system-level interface. Calling these (foreign)
functions from within a dynamic environment often involves the development of so called " glue code”
on both sides, the use of external tools generating communication code, or integration of other mid-
dleware fulfilling that purpose. However, even inside a completely static environment, without having
to bridge multiple languages, it can be very useful to call functions dynamically. Consider, for example,
message systems, dynamic function call dispatch mechanisms, without even knowing about the target.

The dyncall library project provides a clean and portable C interface to dynamically issue calls to
foreign code using small call kernels written in assembly. Instead of providing code for every bridged
function call, which unnecessarily results in code bloat, only a modest number of instructions are used
to invoke all the calls.

1.1 Static function calls in C

The C programming language and its direct derivatives are limited in the way function calls are handled.
A C compiler regards a function call as a fully qualified atomic operation. In such a statically typed
environment, this includes the function call’'s argument arity and type, as well as the return type.

1.2 Anatomy of machine-level calls

The process of calling a function on the machine level yields a common pattern:

1. The target function’s calling convention dictates how the stack is prepared, arguments are passed,
results are returned and how to clean up afterwards.

2. Function call arguments are loaded in registers and on the stack according to the calling conven-
tion that take alignment constraints into account.

3. Control flow transfer from caller to callee.

4. Process return value, if any. Some calling conventions specify that the caller is responsible for
cleaning up the argument stack.



The following example depicts a C source and the corresponding assembly for the X86 32-bit
processor architecture.

extern void f(int x, double y,float z);
void caller ()

{
£(1,2.0,3.0f);
}
Listing 1: C function call
.global £ ; external symbol ’f°
caller:
push 40400000H ; 3.0f (32 bit float)

; 2.0 (64 bit float)
push 40000000H ; low DWORD
push OH ; high DWORD
push 1H ;1 (32 bit integer)
call f ; call ’f°
add esp, 16 ; cleanup stack

Listing 2: Assembly X86 32-bit function call




2 Overview

The dyncall library encapsulates architecture-, OS- and compiler-specific function call semantics in a
virtual

bind argument parameters from left to right and then call

interface allowing programmers to call C functions in a completely dynamic manner. In other words,
instead of calling a function directly, the dyncall library provides a mechanism to push the function
parameters manually and to issue the call afterwards.

Since the idea behind this concept is similar to call dispatching mechanisms of virtual machines, the
object that can be dynamically loaded with arguments, and then used to actually invoke the call, is
called CallVM. It is possible to change the calling convention used by the CallVM at run-time. Due
to the fact that nearly every platform comes with one or more distinct calling conventions, the dyncall
library project intends to be a portable and open-source approach to the variety of compiler-specific
binary interfaces, platform specific subtleties, and so on. ..

The core of the library consists of dynamic implementations of different calling conventions written in
assembler. Although the library aims to be highly portable, some assembler code needs to be written for
nearly every platform/compiler/OS combination. Unfortunately, there are architectures we just don't
have at home or work. If you want to see dyncall running on such a platform, feel free to send in code
and patches, or even to donate hardware you don't need anymore. Check the supported platforms
section for an overview of the supported platforms and the different calling convention sections for
details about the support.

2.1 Features
e A portable and extendable function call interface for the C programming language.

e Ports to major platforms including Windows, Mac OS X, Linux, BSD derivates, iPhone and em-
bedded devices and more, including lesser known and/or older platforms like Plan 9, Playstation
Portable, Nintendo DS, etc..

e Add-on language bindings to Python, R, Ruby, Go, Erlang, Java, Lua, sh, ...

e High-level state machine design using C to model calling convention parameter transfer.
e One assembly hybrid call routine per calling convention.

e Formatted call, vararg function API.

e Comprehensive test suite.



2.2 Showcase

Foreign function call in C

This section demonstrates how the foreign function call is issued without, and then with, the help
of the dyncall library and scripting language bindings.

double call_as_sqrt(void* funptr, double x)
{

return ( ( double (%) (double) )funptr) (x);
}

Listing 3: Foreign function call in C

Dyncall C library example

The same operation can be broken down into atomic pieces (specify calling convention, binding
arguments, invoking the call) using the dyncall library.

#include <dyncall.h>
double call_as_sqrt(void* funptr, double x)

{
double r;
DCCallVM* vm = dcNewCallVM (4096) ;
dcMode (vm, DC_CALL_C_DEFAULT);
dcReset (vm) ;
dcArgDouble (vm, x);
r = dcCallDouble(vm, funptr);
dcFree(vm) ;
return r;

}

Listing 4: Dyncall C library example

This is more code than a direct, hardcoded function call, however it's completely dynamic. Also,
despite this coming with an overhead of more executed code per single function call, compared to
function interface wrapper tools that generate per call glue-code less code is used overall, .

The following are examples from script bindings:

Python example

import pydc
def call_as_sqrt (funptr,x):
return pydc.call(funptr,"d)d", x)

Listing 5: Dyncall Python bindings example

R example

call.as.sqrt <- function(funptr,x)
.dyncall (funptr,"d)d", x)

Listing 6: Dyncall R bindings example




2.3 Supported platforms/architectures

The feature matrix below gives a brief overview of the currently supported platforms. Different colors
are used, where a green cell indicates a supported platform, yellow a platform that might work (but
is untested) and red a platform that is currently unsupported. Gray cells are combinations that don't
exist at the time of writing, or that are not taken into account.

Light green cells mark complete feature support, as in dyncall and dyncallback. Dark green means
basic support but lacking features (e.g. dyncall support, but not dyncallback). Please note that a
green cell (even a light-green one) doesn’t imply that all existing calling conventions/features/build
tools are supported for that platform (but the most important). For detailed info about a platform’s
support consult the calling convention appendix.
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Table 1: Supported platforms
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2.4 Build Requirements

The library needs at least a ¢99 compiler with additional support for anonymous structs/unions (which
were introduced officially in c11). Given that those are generally supported by pretty much all major
c99 conforming compilers (as default extension), it should build fine with a c99 toolchain.

11



3 Building the library

The library has been built and used successfully on several platform/architecture configurations and
build systems. Please see notes on specfic platforms to check if the target architecture is currently
supported.

3.1 Requirements

The following tools are supported directly to build the dyncall library. However, as the number of
source files to be compiled for a given platform is small, it shouldn’t be difficult to build it manually
with another toolchain.

e C compiler to build the dyncall library (GCC, Clang, SunPro or Microsoft C/C++ compiler)

C++ compiler to build the optional test cases (GCC, Clang, SunPro or Microsoft C/C++ com-
piler)

e BSD make, GNU make, Microsoft nmake or mk (on Plan9) as automated build tools

Python (optional - for generation of some test cases)

Lua (optional - for generation of some test cases)

CMake (optional support)

3.2 Supported/tested platforms and build systems

Building dyncall is a straightforward two-step process, first configure, then make. The library should
be able to be built with the default operating systems’ build tools, so BSD make on BSD and derived
systems, GNU make on GNU and compatible, mk on Plan9, nmake on Windows, etc.. This is a detailed
overview of platforms and their build tools that are known to build dyncall:

Platform Build Tool(s) Compiler, SDK

Windows nmake,Visual Studio  cl, cygwin (gcc), mingw (gcc)
Unix-like GNU/BSD/Sun make gcc, clang, sunc

Plan9 mk 8c

Haiku/BeOS GNU make gce

i0S/iPhone GNU make gcc and iPhone SDK on Mac OS X
Nintendo DS nmake devkitPro[42] tools on Windows
Playstation Portable GNU make psptoolchain[43] tools

12



3.3 Build instructions

1. Configure the source (not needed for Makefile.embedded)

*nix flavour

[./configure [--option ...]

Available options (omit for defaults):

—--help display help
--prefix=path specify installation prefix (Unix shell)
——target=platform MacOSX,iOS,iPhoneSimulator,PSP,...
--sdk=version SDK version

Windows flavour, and cross-build from Windows (PSP, NDS, etc.)

[.\configure [/option ...]

Available options:

/7 display help

/prefix path set installation prefix (GNU make only)
/prefix-bd path set build directory prefix (GNU make only)
/target-x86 build for x86 architecture (default)
/target-x64 build for x64 architecture

/target-psp build for PlayStation Portable (homebrew SDK)

/target-nds-arm build for Nintendo DS (devkitPro, ARM mode)
/target-nds—thumb build for Nintendo DS (devkitPro, THUMB mode)

/tool-msvc use Microsoft Visual C++ compiler (default)
/tool-gcc use GNU Compiler Collection

/asm-ml use Microsoft Macro Assembler (default)
/asm-as use the GNU Assembler

/asm-nasm use NASM Assembler

/config-release build release version (default)
/config-debug build debug version

Plan 9 flavour

[./configure.rc [--option ...]

Available options (none, at the moment):

—-help display help

2. Build the static libraries dyncall, dynload and dyncallback

make # for {GNU,BSD} Make
nmake /f Nmakefile # for NMake on Windows
mk # for mk on Plan9

3. Install libraries and includes (supported for GNU and BSD make based builds, only)

(make install

13



4. Optionally, build the test suite

make tests # for {GNU,BSD} Make
nmake /f Nmakefile tests # for NMake on Windows
mk tests # for mk on Plan9

3.4 Build-tool specific notes

Some platforms require some manual tweaks:

Problem: Build fails because CC and/or related are not set, or different compiler, linker, etc. should
be used.

Solution: Set the 'CC’" and other environment variables explicitly to the desired tools. E.g.:

[CC=gcc make ]

Problem: On windows using mingw and msys/unixutils 'Make’, the make uses 'cc’ for C compilation,
which does not exist in mingw.

Solution: Set the 'CC’ environment variable explicitly to 'gcc’ (as in the example above).

3.5 Build with CMake

cmake -DCMAKE_INSTALL_PREFIX=<location>
make

14



4 Bindings to programming languages

Through binding of the dyncall library into a scripting environment, the scripting language can gain
system programming status to a certain degree.

The dyncall library provides bindings to Erlang|[1], Java[2], Lua[3], Python[4], R[5], Ruby[6], Go[7] and
the shell/command line.

However, please note that some of these bindings are work-in-progress and not automatically tested,
meaning it might require some additional work to make them work.

4.1 Common Architecture

The binding interfaces of the dyncall library to various scripting languages share a common set of
functionality to invoke a function call.

4.1.1 Dynamic loading of code

The helper library dynload which accompanies the dyncall library provides an abstract interface to
operating-system specific mechanisms for loading and accessing executable code out of, but not limited
to, shared libraries.

4.1.2 Functions

All bindings are based on a common interface convention providing a common set of the following 4
functions (exact spelling depending on the binding's scripting environment):

load - load a module of compiled code
free - unload a module of compiled code
find - find function pointer by symbolic names

call - invoke a function call

15



4.1.3 Signatures

A signature is a character string that represents a function’s arguments and return value types. It is
used in the scripting language bindings invoke functions to perform automatic type-conversion of the
languages’ types to the low-level C/C++ data types. This is an essential part of mapping the more
flexible and often abstract data types provided in scripting languages to the strict machine-level data
types used by C-libraries. The high-level C interface functions dcCallF(), dcVCallF(), dcArgF()
and dcVArgF () of the dyncall library also make use of this signature string format.

The format of a dyncall signature string is as depicted below:

dyncall signature string format

<input parameter type signature character>* ') <return type signature character>

The <input parameter type signature character> sequence left to the ')’ is in left-to-right order of
the corresponding C function parameter type list.
The special <return type signature character> 'v' specifies that the function does not return a value
and corresponds to void functions in C.

Signature character C/C++ data type

void

_Bool, bool

char

unsigned char

short

unsigned short

int

unsigned int

long

unsigned long

long long, int64_t

unsigned long long, uint64_t
float

double

void*

const char* (pointing to C string)

NT OGO HE D Q0 <

Table 2: Type signature encoding for function call data types

Please note that using a ' (" at the beginning of a signature string is possible, although not required.
The character doesn't have any meaning and will simply be ignored. However, using it prevents annoying
syntax highlighting problems with some code editors.

16



Calling convention modes can be switched using the signature string, as well. A '_" in the signature
string is followed by a character specifying what calling convention to use, as this affects how arguments
are passed. This makes only sense if there are multiple co-existing calling conventions on a single
platform. Usually, this is done at the beginning of the string, except in special cases, like specifying
where the varargs part of a variadic function begins. The following signature characters exist:

Signature character Calling Convention
platform’s default calling convention
‘e’ vararg function

vararg function's variadic/ellipsis part (...), to be specified before first vararg

only on x86: cdecl

only on x86: stdcall

only on x86: fastcall (MS)

only on x86: fastcall (GNU)

only on x86: thiscall (MS)

only on x86: thiscall (GNU)

only on ARM: ARM mode

only on ARM: THUMB mode

syscall

s = H + 0 o -

Table 3: Calling convention signature encoding

17



Examples of C function prototypes

C function prototype dyncall signature
void  f1(); v
int  f2(int, int); "ii)i"
long long  f3(void*); "p)L"
void  f3(int**); "p)v”
double  f4(int, bool, char, double, const char*); "iBcdz)d"
void  f5(short a, long long b, ...) " _esl_.di)v" (for (promoted) varargs: double, int)

Table 4: Type signature examples of C function prototypes

4.2 Erlang language bindings

The OTP library application erldc implements the Erlang language bindings.

Signature character accepted Erlang data types

'v' no return type

atoms 'true’ and 'false’ converted to bool
integer cast to (unsigned) char

integer cast to (unsigned) short

integer cast to (unsigned) int

integer cast to (unsigned) long

integer cast to (unsigned) long long
decimal cast to float

decimal cast to double

binary (previously returned from call_ptr or callf) cast to void*
string cast to void*

HaoH®a
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Table 5: Type signature encoding for Erlang bindings
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4.3 Go language bindings

A Go binding is provided through the godc package. Since Go's type system is basically a superset of
C’s, the type mapping from Go to C is straightforward.

Signature character accepted Go data types
'v' no return type

bool

int8, uint8

intl6, uintl6

int, uint

int32, uint32

int64, uint64

float32

float64

uintptr, unsafe.Pointer

HoHua

oA L oo WS

N

Table 6: Type signature encoding for Go bindings

Note that passing a Go-string directly to a C-function expecting a pointer is not directly possible.
However, the binding comes with two helper functions, A11ocCString(value string) unsafe.Pointer
and FreeCString(value unsafe.Pointer) to help with converting a string to an unsafe.Pointer
which then can be passed to ArgPointer(value unsafe.Pointer). Once you are done with this
temporary string, free it using FreeCString(value unsafe.Pointer).

4.4 Python language bindings

The python module pydc implements the Python language bindings, namely load, find, free, call.

Signature character accepted Python 2 types accepted Python 3 types

'v' no return type no return type

'B’ bool bool

'c’,'C’ int, string (with single char) int, string (with single char)
's’, 'S’ int int

R int int

i,y int int

1, 'L int, long int

" float float

'a’ double double

P’ bytearray, int, long bytearray (mutable in C), int
/4 string, unicode, bytearray string, bytearray (all immutable)

Table 7: Type signature encoding for Python bindings

For more details, refer to the README .txt file of the binding.
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4.5 R language bindings

The R package rdyncall implements the R langugae bindings providing the function .dyncall ()

Signature character accepted R data types

'v' no return type

coerced to logical vector, first item

coerced to integer vector, first item truncated char

coerced to integer vector, first item truncated to unsigned char
coerced to integer vector, first item truncated to short

coerced to integer vector, first item truncated to unsigned short
coerced to integer vector, first item

coerced to integer vector, first item casted to unsigned int
coerced to integer vector, first item

coerced to integer vector, first item casted to unsigned long
coerced to numeric, first item casted to long long

coerced to numeric, first item casted to unsigned long long
coerced to numeric, first item casted to float

coerced to numeric, first item

external pointer or coerced to string vector, first item

coerced to string vector, first item

ND @ mBbHOuwHRrn? Qo W

Table 8: Type signature encoding for R bindings

Some notes on the R Binding:
e Unsigned 32-bit integers are represented as signed integers in R.

e 64-bit integer types do not exist in R, therefore we use double floats to represent 64-bit integers
(using only the 52-bit mantissa part).
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4.6 Ruby language bindings
The Ruby gem rbdc implements the Ruby language bindings.

Signature character accepted Ruby data types

1

v no return type

'B’ TrueClass, FalseClass, NilClass, Fixnum casted to bool
'c', 'C’ Fixnum cast to (unsigned) char

's', '8’ Fixnum cast to (unsigned) short

1T Fixnum cast to (unsigned) int

3T Fixnum cast to (unsigned) long

17, 'L Fixnum cast to (unsigned) long long

't Float cast to float

a’ Float cast to double

'p,'Z String cast to void*

Table 9: Type signature encoding for Ruby bindings
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5 Library Design

5.1 Design considerations

The dyncall library encapsulates function call invocation semantics that depend on the compiler, op-
erating system and architecture. The core library is driven by a function call invocation engine, named
CallVM, that encapsulates a call stack to foreign functions and manages the following three phases
that constitute a truly dynamic function call:

1. Specify the calling convention. Some run-time platforms, such as Microsoft Windows on a 32-bit
X86 architecture, even support multiple calling conventions.

2. Specify the function call arguments in a specific order. The interface design dictates a left to
right order for C and C++ function calls in which the arguments are bound.

3. Specify the target function address, expected return value and invoke the function call.

The calling convention mode entirely depends on the way the foreign function has been compiled
and specifies the low-level details on how a function actually expects input parameters (in memory, in
registers or both) and how to return its result(s).
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6 Developers

6.1 Noteworthy files in the project root

configure pre-make configuration tool (unix-shell)
configure.bat  pre-nmake configuration tool (windows batch)
configure.rc pre-mk configuration tool (Plan 9's rc)
CMakeLists.txt top-level project information for CMake
Makefile GNU/BSD makefile (output of ./configure)
Nmakefile MS nmake makefile

mkfile Plan 9 mkfile

LICENSE license information

README quickstart doc

buildsys/ build system details and extras

doc/ platform specific readme’s and manual
dyncall/ dyncall library source code

dyncallback/ dyncallback library source code

dynload/ dynload library source code

test/ test suites

6.2 Test suites
plain Simple, identity, unary function calls for all supported return types and calling conventions.
plain_c++ Similar to plain, but for C++ thiscalls (GNU and MS calling convention).

suite All combinations of parameter types and counts are tested on void function calls. A script written
in Python (mkcase.py) generates the tests up to an upper MAXARG limit.

suite_floats Based on suite. Test double/float variants with up to 10 arguments.

suite_x86win32std All combinations of parameter types and counts are tested on __stdcall void
function calls. A script written in Python (mkcase.py) generates the tests up to an upper
MAXARG limit. This is a x86/Windows only test.

suite_x86win32fast All combinations of parameter types and counts are tested on __fastcall (MS or
GNU, depending on the build tool) void function calls. A script written in Python (mkcase.py)
generates the tests up to an upper MAXARG limit. This is a x86/Windows only test.

ellipsis All combinations of parameter types and counts are tested on void ellipsis function calls. A
script written in Python (mkcase.py) generates the tests up to an upper MAXARG limit.

suite2 Designed mass test suite for void function calls. Tests individual void functions with a varying
count of arguments and type.

suite2_win32std Designed mass test suite for __stdcall void function calls. Tests individual void
functions with a varying count of arguments and type. This is a x86/Windows only test.

suite2_win32fast Designed mass test suite for __fastcall (MS or GNU, depending on the build tool)
void function calls. Tests individual void functions with a varying count of arguments and type.
This is a x86/Windows only test.

suite3 All combinations of parameter types integer, long long, float and double and counts are tested
on void function calls. A script written in Python (mkcase.py) generates the tests up to an
upper MAXARG limit. This is a modified version of suite.

call_suite General purpose test suite combining aspects from all others suites (usually enough for
testing non-callback calls). A script written in Lua generates the tests.

23



callf Tests the formatted call dyncall C API.

malloc_wx Tests writable and executable memory allocation used by the dyncallback C API.
thunk Tests callbacks for the dyncallback C API.

callback_plain Simple callback function test (useful for easy debugging of new ports).

callback_suite Mass test suite for callback function testing. Uses random function argument number
and type. A script written in Lua generates the tests up to a given number of calls and type
combinations.

resolv_self Test for dynload library to resolve symbols from application image itself.
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7 Epilog

7.1 Stability and security considerations

Since the dyncall library doesn't know anything about the called function itself (except its address),
no parameter-type validation is done. This means that in order to avoid crashes, data corruption,
etc., the user is required to ascertain the number and types of parameters. It is strongly advised to
double check the parameter types of every function to be called, and not to call unknown functions at all.

Consider a simple program that issues a call by directly passing some unchecked command line

arguments to the call itself, or even worse, by indirectly choosing a library to load and a function to
call without verification. Such unchecked input data can quite easily be used to intentionally crash the
program or to take over control of the program flow.
If not used with care, programs depending on the dyncall, dyncallback and dynload libraries, can be
exploited as arbitrary function call dispatchers through manipulation of their input data. Successful
exploits of badly formed programs like outlined above can be misused as powerful tools for a wide
variety of malicious attacks, ...

7.2 Embedding

The dyncall library strives to have a minimal set of dependencies, meaning no required runtime de-
pendencies and usually only the necessary tools to build the library as build-time dependencies, like a
compiler and assembler, linker, etc.. The library uses some heap-memory to store the CallVM and uses

by default the platform’s malloc() and free() calls. However, providing custom dcAllocMem and
dcFreeMem C-preprocessor definitions will override the default behaviour. See dyncall/dyncall_alloc.h
for details.

7.3 Multi-threading

The dyncall library is thread-safe and reentrant, by means that it works correctly during execution of
multiple threads if, and only if there is at most a single thread pushing arguments to one CallVM.
Since there's no limitation on the number of created CallVM objects, it is recommended to keep a
copy per thread if mutliple threads make use of dyncall in parallel. Invoking the call should always be
thread-safe, however, whether the called function is thread-safe is up to the programmer to verify, of
course.

7.4 Supported types

Currently, the dyncall library supports all of ANSI C's integer, floating point and pointer types as
function call arguments and return values. Additionally, C++'s bool and C99's Bool types are
supported. Due to the still rare and often incomplete support of the long double type on various
platforms, the latter is currently not officially supported.

7.5 Roadmap

The dyncall library should be extended by a wide variety of other calling conventions and ported to other
and more esoteric platforms. With its low memory footprint it surely comes in handy on embedded
systems. Furthermore, the authors plan to provide more scripting language bindings, examples, and
other projects based on dyncall.

Besides dyncall and dyncallback, the dynload library needs to be extended with support for other shared
library formats (e.g. AmigaOS .library or GEM [44] files).
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7.6 Related libraries

Besides the dyncall library, there are other free and open projects with similar goals. The most
noteworthy libraries are libffi [45], C/Invoke [46] and libffcall [47].
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A Dyncall C library API

The library provides low-level functionality to make foreign function calls from different run-time envi-
ronments. The flexibility is constrained by the set of supported types.

C interface style conventions

This manual and the dyncall library’s C interface "dyncall.h" use the following C source code
style.

Subject C symbol Details Example

Types DC<type name> lower-case  DCint, DCfloat, DClong, ...
Structures DC<structure name> camel-case DCCallVM

Functions dc<function name> camel-case  dcNewCallVM, dcArglnt, ...

Table 10: C interface conventions

A.1 Supported C/C++ argument and return types

Type alias C/C++ data type

DCbool _Bool, bool
DCchar char
DCshort short
DCint int

DClong long
DClonglong long long
DCfloat float

DCdouble double
DCpointer  void*
DCvoid void

Table 11: Supported C/C++ argument and return types
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A.2 Call Virtual Machine - CallVM

This CallVM is the main entry to the functionality of the library.

Types

Ltypedef void DCCallVM; /* abstract handle */ J

Details

The CallVM is a state machine that manages all aspects of a function call from configuration,
argument passing up the actual function call on the processor.

A.3 Allocation

Functions
DCCallVM* dcNewCallVM (DCsize size);
void dcFree (DCCallVM* vm);

dcNewCallVM creates a new CallVM object, where size specifies the max size of the internal stack
that will be allocated and used to bind arguments to. Use dcFree to destroy the CallVM object.

This will allocate memory using the system allocators or custom ones provided custom dcAllocMem and
dcFreeMem macros are defined to override the default behaviour. See dyncall_alloc.h for defails.

A.4  Error Reporting

Function

LDCint dcGetError (DCCallVM* vm) ; J

Returns the most recent error state code out of the following:

Errors
Constant Description
DC_ERROR_NONE No error occured.

DC_ERROR_UNSUPPORTED_MODE Unsupported mode, caused by dcMode ()

Table 12: CallVM calling convention modes
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A.5 Configuration

Function

Lvoid dcMode (DCCallVM* vm, DCint mode); J

Sets the calling convention to use. Note that some mode/platform combination don't make any
sense (e.g. using a PowerPC calling convention on a MIPS platform) and are silently ignored.

Modes

Constant

Description

DC_CALL_C_DEFAULT
DC_CALL_C_ELLIPSIS
DC_CALL_C_ELLIPSIS_VARARGS
DC_CALL_C_X86_CDECL
DC_CALL_C_X86_WIN32_STD
DC_CALL_C_X86_WIN32_FAST_MS
DC_CALL_C_X86_WIN32_FAST_GNU
DC_CALL_C_X86_WIN32_THIS_MS
DC_CALL_C_X86_WIN32_THIS_GNU
DC_CALL_C_X86_PLAN9
DC_CALL_C_X64_WIN64
DC_CALL_C_X64_SYSV
DC_CALL_C_PPC32_DARWIN
DC_CALL_C_PPC32_0SX
DC_CALL_C_PPC32_SYSV
DC_CALL_C_PPC32_LINUX
DC_CALL_C_PPC64
DC_CALL_C_PPC64_LINUX
DC_CALL_C_ARM_ARM
DC_CALL_C_ARM_THUMB
DC_CALL_C_ARM_ARM_EABI
DC_CALL_C_ARM_THUMB_EABI
DC_CALL_C_ARM_ARMHF
DC_CALL_C_ARM64
DC_CALL_C_MIPS32_EABI
DC_CALL_C_MIPS32_PSPSDK
DC_CALL_C_MIPS32_032
DC_CALL_C_MIPS64_N64
DC_CALL_C_MIPS64_N32
DC_CALL_C_SPARC32
DC_CALL_C_SPARC64
DC_CALL_SYS_DEFAULT
DC_CALL_SYS_X86_INT80H_BSD
DC_CALL_SYS_X86_INT80H_LINUX
DC_CALL_SYS_X64_SYSCALL_SYSV
DC_CALL_SYS_PPC32
DC_CALL_SYS_PPC64

C default function call for current platform

C ellipsis function call (named arguments (before '..."))
C ellipsis function call (variable/unnamed arguments (after "..."))
C x86 platforms standard call

C x86 Windows standard call

C x86 Windows Microsoft fast call

C x86 Windows GCC fast call

C x86 Windows Microsoft this call

alias for DC_CALL_C_X86_CDECL (GNU thiscalls identical to cdecl)
C x86 Plan9 call

C x64 Windows standard call

C x64 System V standard call

C ppc32 Mac OS X standard call

alias for DC_CALL_C_PPC32_DARWIN

C ppc32 SystemV standard call

alias for DC_CALL_C_PPC32_SYSV

C ppc64 SystemV standard call

alias for DC_CALL_C_PPC64

C arm call (arm mode)

C arm call (thumb mode)

C arm eabi call (arm mode)

C arm eabi call (thumb mode)

C arm call (arm hardfloat - e.g. raspberry pi)

C arm64 call (AArch64)

C mips32 eabi call

alias for DC_CALL_C_MIPS32_EABI (deprecated)
C mips32 032 call

C mips64 n64 call

C mips64 n32 call

C sparc32 call

C sparc64 call

C default syscall for current platform

C syscall for x86 BSD platforms

C syscall for x86 Linux

C syscall for x64 System V platforms

C syscall for ppc32

C syscall for ppc64

Table 13: CallVM calling convention modes
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Details

DC_CALL_C_DEFAULT is the default standard C call on the target platform. It uses the standard C
calling convention. DC_CALL_C_ELLIPSIS is used for C ellipsis calls which allow to build up a variable
argument list. On many platforms, there is only one C calling convention. The X86 platform provides
a rich family of different calling conventions.

A.6 Machine state reset

[void dcReset (DCCallVM* vm) ; }

Resets the internal stack of arguments and prepares it for a new call. This function should be called
after setting the call mode (using dcMode), but prior to binding arguments to the CallVM (except for
when setting mode DC_SIGCHAR_CC_ELLIPSIS_VARARGS, which is used prior to binding varargs of
variadic functions). Use it also when reusing a CallVM, as arguments don't get flushed automatically
after a function call invocation.

Note: you should also call this function after initial creation of the a CallVM object, as dcNewCallVM
doesn't do this, implicitly.

A.7 Argument binding

Functions
\
void dcArgBool (DCCallVM* wvm, DCbool arg);
void dcArgChar (DCCallVM* vm, DCchar arg);
void dcArgShort (DCCallVM#* vm, DCshort arg) ;
void dcArglnt (DCCallVM* vm, DCint arg) ;
void dcArgLong (DCCallVM#* vm, DClong arg) ;
void dcArglLongLong(DCCallVM* vm, DClonglong arg);
void dcArgFloat (DCCallVM* wvm, DCfloat arg);
void dcArgDouble (DCCallVM#* vm, DCdouble arg) ;
void dcArgPointer (DCCallVM#* wvm, DCpointer arg);
J

Details

Used to bind arguments of the named types to the CallVM object. Arguments should be bound in
left-to-right order regarding the C function prototype.

A.8 Call invocation

Functions
<

DCvoid dcCallVoid (DCCallVM* vm, DCpointer funcptr);
DCbool dcCallBool (DCCallVM#* vm, DCpointer funcptr);
DCchar dcCallChar (DCCallVM#* vm, DCpointer funcptr);
DCshort dcCallShort (DCCallVM#* vm, DCpointer funcptr);
DCint dcCallInt (DCCallVM#* vm, DCpointer funcptr);
DClong dcCalllong (DCCallVM* vm, DCpointer funcptr);
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DClonglong dcCalllLongLong(DCCallVM#* vm, DCpointer funcptr);
DCfloat dcCallFloat (DCCallVM#* vm, DCpointer funcptr);
DCdouble dcCallDouble (DCCallVM* vm, DCpointer funcptr);
DCpointer dcCallPointer (DCCallVM* vm, DCpointer funcptr);
Details

Calls the function specified by funcptr with the arguments bound to the CallVM and returns. Use
the function that corresponds to the dynamically called function's return value.

After the invocation of the foreign function call, the argument values are still bound and a second
call using the same arguments can be issued. If you need to clear the argument bindings, you have to
reset the CallVM.

A.9 Formatted argument binding and calls (ANSI C ellipsis interface)

Functions
~
void dcArgF (DCCallVM#* vm, const DCsigchar* signature, )
void dcVArgF (DCCallVM#* vm, const DCsigchar* signature, va_list args
void dcCallF (DCCallVM#* vm, DCValue* result, DCpointer funcptr,
const DCsigchar* signature, DN
void dcVCallF(DCCallVM#* vm, DCValue* result, DCpointer funcptr,
const DCsigchar* signature, va_list args);
J
Details

These functions can be used to operate dyncall via a printf-style functional interface, using a
signature string encoding the argument types and return type (and optionally also the calling convention
used). dcArgF() and dcVArgF () just bind arguments to the DCCallVM object, so any return value
specified in the signature is ignored. dcCallF () and dcVCallF() also take a function pointer to call
after binding the arguments. The return value will be stored in what result points to. For more
information about the signature format, refer to
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B Dyncallback C library API

This library extends dyncall with function callback support, allowing the user to dynamically create
a callback object that can be called directly, or passed to functions expecting a function-pointer as
argument.

Invoking a dyncallback calls into a user-defined unified handler that permits iteration and thus dy-
namic handling over the called-back-function's parameters.

The flexibility is constrained by the set of supported types, though.

For style conventions and supported types, see dyncall API section. In order to use dyncallback,
include "dyncall_callback.h".

B.1 Callback Object

The Callback Object is the core component to this library.

Types

[typedef struct DCCallback DCCallback; J

Details
The Callback Object is an object that mimics a fully typed function call to another function (a

generic callback handler, in this case).

This means, a pointer to this object is passed to a function accepting a pointer to a callback function
as the very callback function pointer itself. Or, if called directly, cast a pointer to this object to a
function pointer and issue a call.

B.2 Allocation

Functions

DCCallback* dcbNewCallback (const charx* signature,
DCCallbackHandler* funcptr,
void* userdata);

void dcbFreeCallback(DCCallback* pcb);

dcbNewCallback creates and initializes a new Callback object, where signature is the needed
function signature (format is the one outlined in the language bindings-section of this manual, see Table
2]) of the function to mimic, funcptr is a pointer to a callback handler, and userdata a pointer to
custom data that might be useful in the handler. Use dcbFreeCallback to destroy the Callback object.

As with dcNewCallVM/dcFree, this will allocate memory using the system allocators or custom over-
rides.

B.3 Callback handler

The unified callback handler’s declaration used when creating a DCCallback is:
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char cbHandler (DCCallback* cb,

DCArgs* args,
DCValuex* result,
void* userdata) ;

cb is a pointer to the DCCallback object in use, args allows for dynamic iteration over the called-
back-function’s arguments (input) and result is a pointer to a DCValue object in order to store the

callback’s return value (output, to be set by handler).
Finally, userdata is a pointer to some user defined data that can be set when creating the callback
object. The handler itself returns a signature character (see Table [2)) specifying the data type used for

result.
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C Dynload C library API

The dynload library encapsulates dynamic loading mechanisms and gives access to functions in foreign
dynamic libraries and code modules.

C.1 Loading code

DLLib* dlLoadLibrary(const char* libpath);
void dlFreelibrary(void* libhandle);

d1LoadLibrary loads a dynamic library at 1ibpath and returns a handle to it for use in d1FreeLibrary
and d1FindSymbol calls. Passing a null pointer for the 1ibpath argument is valid, and returns a han-
dle to the main executable of the calling code. Also, searching libraries in library paths (e.g. by just
passing the library’s leaf name) should work, however, they are OS specific. Returns a null pointer on
error.

d1FreeLibrary frees the loaded library with handle pLib.

C.2 Retrieving functions

[void* dlFindSymbol (void* libhandle, const char* symbol); }

This function returns a pointer to a symbol with name pSymbolName in the library with handle
pLib, or returns a null pointer if the symbol cannot be found. The name is specified as it would appear
in C source code (mangled if C++, etc.).

C.3 Misc functions

ﬂint dlGetLibraryPath (DLLib* pLib, char* sOut, int bufSize); J

This function can be used to get a copy of the path to the library loaded with handle pLib. The
parameter sOut is a pointer to a buffer of size bufSize (in bytes), to hold the output string. The
return value is the size of the buffer (in bytes) needed to hold the null-terminated string, or 0 if it can't
be looked up. If bufSize >= return value >1, a null-terminted string with the path to the library
should be in sOut. If it returns 0, the library name wasn't able to be found. Please note that this
might happen in some rare cases, so make sure to always check.

C.4 Symbol iteration

DLSyms * dlSymsInit (const char* libPath);
void dlSymsCleanup (DLSyms* pSyms) ;
int dlSymsCount (DLSyms* pSyms) ;

const char* dlSymsName (DLSyms* pSyms, int index);
const char* dlSymsNameFromValue (DLSyms* pSyms, void* value); /* symbol must be 1

These functions can be used to iterate over symbols. Since they can be used on libraries that are
not linked, they are made for symbol name lookups, not to get a symbol’s address. For that refer
to d1FindSymbol. d1SymsInit will return a handle (or a null pointer on error) to the shared object
specified by 1ibPath, to be used with the other dISyms* functions. Note that contrary to loading and
linking libraries, no (OS-specific) rules for searching libraries in library paths, etc. apply. The handle
must be freed with d1SymsCleanup. d1SymsCount returns the number of symbols in the shared object,
dlSymsName and d1SymsNameFromValue are used to lookup symbol names using an index or symbol's
address, respectively, returning a null pointer on error. The names are returned as they would appear
in C source code (mangled if C++, etc.). The address passed to d1SymsNameFromValue must point
to a loaded symbol.
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D Calling Conventions

Before we go any further. ..

It is important to understand that this section isn't a general purpose description of the present
calling conventions. It merely explains the calling conventions for the parameter/return types
supported by dyncall, not for aggregates (structures, unions and classes), SIMD data types (__m64,
_-m128, __m128i, __m128d), etc.

We strongly advise the reader not to use this document as a general purpose calling convention
reference.

D.1 x86 Calling Conventions

Overview

On this processor, a word is defined to be 16 bits in size, a dword 32 bits and a qword 64 bits.

There are numerous different calling conventions on the x86 processor architecture, like cdecl [g],
MS fastcall [I0], GNU fastcall [II], Borland fastcall [12], Watcom fastcall [I3], Win32 stdcall [9], MS
thiscall [14], GNU thiscall [15], the pascal calling convention [16] and a cdecl-like version for Plan9
[17] (dubbed plan9call by us), etc.

# of regs  # regs to cleanup  64bit args

Name for params # preserve push order by via regs?
cdecl 0 4 — caller -
MS fastcall 2 4 — callee Y
GNU fastcall 2 4 — callee N
Borland fastcall 3 4 — callee N
Watcom fastcall 4 2-6 — callee N
win32 stdcall 0 4 — callee -

MS thiscall 1 4 — callee

GNU thiscall 0 4 — caller -
pascal 0 4 — callee -
plan9call 0 0 — caller -

Table 14: short x86 calling convention comparison

dyncall support

Currently cdecl, stdcall, fastcall (MS and GNU), thiscall (MS and GNU) and plan9call are supported.
Dyncall can also be used to issue syscalls on Linux and ¥*BSD by using the syscall number as target
parameter and selecting the correct mode.
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D.1.1 cdecl

Registers and register usage

Name Brief description

eax scratch, return value

ebx preserve

ecx scratch

edx scratch, return value

esi preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 15: Register usage on x86 cdecl calling convention

Parameter passing

e stack parameter order: right-to-left
e caller cleans up the stack

e all arguments are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers

e return values > 64 bits (e.g. structures) are returned by the caller allocating the space and
passing a pointer to the callee as a new, implicit first parameter (this means, on the stack)

e floating point types are returned via the st0 register (except on Minix, where they are returned
as integers are)

Stack layout

Stack directly after function prolog:
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register save area
local data

arg n-1 caller's frame
parameter area o stack parameters
arg 0

return address

register save area
local data
parameter area

current frame

Figure 1: Stack layout on x86 cdecl calling convention

D.1.2 MS fastcall

Registers and register usage

Name Brief description

eax scratch, return value

ebx preserve

ecx scratch, parameter 0

edx scratch, parameter 1, return value
esi preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 16: Register usage on x86 fastcall (MS) calling convention

Parameter passing

e stack parameter order: right-to-left
e called function cleans up the stack

e first two integers/pointers (<= 32bit) are passed via ecx and edx (even if preceded by other
arguments)

e if first argument is a 64 bit integer, it is passed via ecx and edx

e all other parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register

e integers > 32 bits are returned via the eax and edx registers@Q@Qverify
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e floating point types are returned via the st0 register@QQ@ really ?

Stack layout

Stack directly after function prolog:

register save area
local data

parameter area

register save area
local data
parameter area

last arg

first arg passed via stack

return address

38

stack parameters

caller's frame

current frame

Figure 2: Stack layout on x86 fastcall (MS) calling convention



D.1.3 GNU fastcall

Registers and register usage

Name Brief description

eax scratch, return value

ebx preserve

ecx scratch, parameter 0

edx scratch, parameter 1, return value
esi preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 17: Register usage on x86 fastcall (GNU) calling convention

Parameter passing

e stack parameter order: right-to-left
e called function cleans up the stack

e first two integers/pointers (<= 32bit) are passed via ecx and edx (even if preceded by other
arguments)

e if first argument is a 64 bit integer, it is pushed on the stack and the two registers are skipped

e all other parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register.
e integers > 32 bits are returned via the eax and edx registers.

e floating point types are returned via the stO0.
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Stack layout

Stack directly after function prolog:

register save area
local data

last ar '
g caller's frame

parameter area o stack parameters
first arg passed via stack

return address

register save area
local data
parameter area

current frame

Figure 3: Stack layout on x86 fastcall (GNU) calling convention

D.1.4 Borland fastcall

Also called register convention by Borland.

Registers and register usage

Name Brief description

eax scratch, parameter 0, return value
ebx preserve

ecx scratch, parameter 2

edx scratch, parameter 1, return value
esi preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 18: Register usage on x86 fastcall (Borland) calling convention

Parameter passing

e stack parameter order: left-to-right
e called function cleans up the stack

e first three integers/pointers (with exception of method pointers) (<= 32bit) are passed via eax,
ecx and edx (even if preceded or interleaved by other arguments)

e all other parameters are pushed onto the stack
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Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register

e integers > 32 bits are returned via the eax and edx registers
e floating point types are returned via the stO register
e all others (e.g. all structs, return values > 64 bits, ...) are returned by the caller allocating the

space and passing a pointer to the callee as a new, implicit first parameter

Stack layout
Stack directly after function prolog:

register save area
local data

first arg passed via stack caller's frame

parameter area L. stack parameters
last arg
return address

register save area
local data
parameter area

current frame

Figure 4: Stack layout on x86 fastcall (Borland) calling convention

D.1.5 Watcom fastcall

Registers and register usage

Name Brief description

eax scratch, parameter 0, return value

ebx scratch when used for parameter, otherwise preserve, parameter 2

ecx scratch when used for parameter, otherwise preserve, parameter 3

edx scratch when used for parameter, otherwise preserve, parameter 1, return value
esi scratch when used for return pointer, otherwise preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 19: Register usage on x86 fastcall (Watcom) calling convention

Parameter passing
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e stack parameter order: right-to-left

e called function cleans up the stack

e first four integers/pointers (<= 32bit) are passed via eax, edx, ebx and ecx (even if preceded by
other arguments)

e arguments >32 bits, as well as all subsequent arguments, are passed via the stack

e all other parameters are pushed onto the stack

e varargs are always passed via the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register

e integers > 32 bits are returned via the eax and edx registersQQQ@ verify

e floating point types are returned via the st register@QQ@ really ?

Stack layout

Stack directly after function prolog:

register save area
local data

parameter area

register save area
local data
parameter area

last arg

first arg passed via stack

return address

stack parameters

caller’s frame

current frame

Figure 5: Stack layout on x86 fastcall (Watcom) calling convention

D.1.6 win32 stdcall

Registers and register usage

Parameter passing

e Stack parameter order: right-to-left

e Called function cleans up the stack

e All parameters are pushed onto the stack
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Name Brief description

eax scratch, return value

ebx preserve

ecx scratch

edx scratch, return value

esi preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 20: Register usage on x86 stdcall calling convention

e Stack is usually 4 byte aligned (GCC >= 3.x seems to use a 16byte alignement)

e the direction flag is clear on entry and must be returned clear

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers

e floating point types are returned via the stO register

Stack layout

Stack directly after function prolog:

register save area
local data

P 1L caller’'s frame
parameter area A stack parameters
arg 0

return address

register save area
local data
parameter area

current frame

Figure 6: Stack layout on x86 stdcall calling convention

D.1.7 MS thiscall

Registers and register usage
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Name Brief description

eax scratch, return value

ebx preserve

ecx scratch, parameter 0

edx scratch, return value

esi preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 21: Register usage on x86 thiscall (MS) calling convention

Parameter passing

e stack parameter order: right-to-left
e called function cleans up the stack
e first parameter (this pointer) is passed via ecx

e all other parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers@Q@Qverify

o floating point types are returned via the st0 register@QQ really ?

Stack layout

Stack directly after function prolog:

register save area | |

local data

arg n-1 caller's frame

parameter area L. stack parameters
arg 1
return address

register save area
local data
parameter area

current frame

Figure 7: Stack layout on x86 thiscall (MS) calling convention
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D.1.8 GNU thiscall

This is equivalent to the cdecl calling convention, with the first parameter being the this pointer.

D.1.9 pascal

The best known uses of the pascal calling convention are the 16 bit OS/2 APIls, Microsoft Windows
3.x and Borland Delphi 1.x.

Registers and register usage

Name Brief description

eax scratch, return value

ebx preserve

ecx scratch

edx scratch, return value

esi preserve

edi preserve

ebp preserve

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 22: Register usage on x86 pascal calling convention

Parameter passing

e stack parameter order: left-to-right
e called function cleans up the stack

e all parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers

e floating point types are returned via the st0 register

Stack layout
Stack directly after function prolog:
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register save area
local data

arg 0
parameter area -
arg n-1

return address

register save area
local data
parameter area

stack parameters

caller's frame

current frame

Figure 8: Stack layout on x86 pascal calling convention

D.1.10 plan9call

Registers and register usage

Name Brief description

eax scratch, return value

ebx scratch

ecx scratch

edx scratch

esi scratch

edi scratch

ebp scratch

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 23: Register usage on x86 plan9call calling convention

Parameter passing

e stack parameter order: right-to-left
e caller cleans up the stack

e all parameters are pushed onto the stack
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Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register

e integers > 32 bits or structures are returned by the caller allocating the space and passing a
pointer to the callee as a new, implicit first parameter (this means, on the stack)

e floating point types are returned via the stO register (called FO in plan9 8a’s terms)

Stack layout

Note there is no register save area at all. Stack directly after function prolog:

local data
arg n-1
parameter area . stack parameters caller’s frame
arg 0
return address
local data

parameter area current frame

Figure 9: Stack layout on x86 plan9call calling convention
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D.1.11 Linux syscalls

Parameter passing

syscall is issued by triggering interrupt 80h

syscall number is set in eax
e params are passed in the following registers in this order: ebx, ecx, edx, esi, edi, ebp

e for more than six arguments, ebx points to the list of further arguments (not used in practice, as
Linux syscalls use a maximum of 5 arguments)

e register eax holds the return value
D.1.12 *BSD syscalls
Parameter passing

e syscall is issued by triggering interrupt 80h
e syscall number is set in eax

e params are passed on the stack as with the cdecl calling convention
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D.2 x64 Calling Conventions

Overview

The x64 (64bit) architecture designed by AMD is based on Intel's x86 (32bit) architecture, support-

ing it natively. It is sometimes referred to as x86-64, AMDG64, or, cloned by Intel, EM64T or Intel64.
On this processor, a word is defined to be 16 bits in size, a dword 32 bits and a qword 64 bits. Note
that this is due to historical reasons (terminology didn't change with the introduction of 32 and 64 bit
processors).
The x64 calling convention for MS Windows [25] differs from the SystemV x64 calling convention [26]
used by Linux/*BSD/... Note that this is not the only difference between these operating systems.
The 64 bit programming model in use by 64 bit windows is LLP64, meaning that the C types int and
long remain 32 bits in size, whereas long long becomes 64 bits. Under Linux/*BSD/... it's LP64.

Compared to the x86 architecture, the 64 bit versions of the registers are called rax, rbx, etc.. Further-

more, there are eight new general purpose registers r8-r15.

dyncall support

Currently, the MS Windows and System V calling conventions are supported.
Dyncall can also be used to issue syscalls on System V platforms by using the syscall number as target
parameter and selecting the correct mode.

D.2.1 MS Windows

Registers and register usage

Name Brief description

rax scratch, return value

rbx permanent

rcx scratch, parameter 0 if integer or pointer

rdx scratch, parameter 1 if integer or pointer

rdi permanent

rsi permanent

rbp permanent, may be used as frame pointer

rsp stack pointer

r8-r9 scratch, parameter 2 and 3 if integer or pointer

r10-r11 scratch, permanent if required by caller (used for syscall /sysret)
r12-r15 permanent

xmm0 scratch, floating point parameter 0, floating point return value

xmml-xmm3  scratch, floating point parameters 1-3
xmmé4-xmmb scratch, permanent if required by caller
xmmb6-xmm15 permanent

Table 24: Register usage on x64 MS Windows platform

Parameter passing

e stack parameter order: right-to-left

e caller cleans up the stack
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e first 4 integer/pointer parameters are passed via rcx, rdx, r8, r9 (from left to right), others are
pushed on stack (there is a spill area for the first 4)

e float and double parameters are passed via xmmOl-xmm3l|

e first 4 parameters are passed via the correct register depending on the parameter type - with
mixed float and int parameters, some registers are left out (e.g. first parameter ends up in rcx
or xmmO0, second in rdx or xmm1, etc.)

e parameters in registers are right justified

e parameters < 64bits are not zero extended - zero the upper bits contiaining garbage if needed
(but they are always passed as a qword)

e parameters > 64 bit are passed by reference

o if callee takes address of a parameter, first 4 parameters must be dumped (to the reserved space
on the stack) - for floating point parameters, value must be stored in integer AND floating point
register

e caller cleans up the stack, not the callee (like cdecl)

e stack is always 16byte aligned - since return address is 64 bits in size, stacks with an odd number
of parameters are already aligned

o ellipsis calls take floating point values in int and float registers (single precision floats are promoted
to double precision as required by ellipsis calls)

e if size of parameters > 1 page of memory (usually between 4k and 64k), chkstk must be called

Return values

e return values of pointer or integral type (<= 64 bits) are returned via the rax register
e floating point types are returned via the xmmO register

e for types > 64 bits, a secret first parameter with an address to the return value is passed

Stack layout

Stack frame is always 16-byte aligned. Stack directly after function prolog:
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register save area
local data

parameter area

register save area
local data
parameter area

D.2.2 System V

arg n-1
. stack parameters
arg 4

r9 or xmm3
r8 or xmm?2
rdx or xmm1
rcx or xmmO
return address

caller’s frame

spill area

current frame

Figure 10: Stack layout on x64 Microsoft platform

(Linux / *BSD / MacOS X)

Registers and register usage

Name Brief description

rax scratch, return value

rbx permanent

rcx scratch, parameter 3 if integer or pointer

rdx scratch, parameter 2 if integer or pointer, return value
rdi scratch, parameter O if integer or pointer

rsi scratch, parameter 1 if integer or pointer

rbp permanent, may be used as frame pointer

rsp stack pointer

r8-r9 scratch, parameter 4 and 5 if integer or pointer
r10-r1l scratch

r12-r15 permanent

xmm0 scratch, floating point parameters 0, floating point return value
xmml-xmm7 scratch, floating point parameters 1-7

xmm8-xmm1l5 scratch

st0-stl scratch, 16 byte floating point return value

st2-st7 scratch

Table 25: Register usage on x64 System V (Linux/*BSD)

Parameter passing

e stack parameter order: right-to-left

e caller cleans up the stack

e first 6 integer/pointer parameters are passed via rdi, rsi, rdx, rcx, r8, r9

e first 8 floating point parameters <= 64 bits are passed via xmmOQl-xmm7|
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e parameters in registers are right justified

e parameters that are not passed via registers are pushed onto the stack

e parameters < 64bits are not zero extended - zero the upper bits contiaining garbage if needed

(but they are always passed as a qword)

e integer/pointer parameters > 64 bit are passed via 2 registers

o if callee takes address of a parameter, number of used xmm registers is passed silently in al
(passed number mustn't be exact but an upper bound on the number of used xmm registers)

e stack is always 16byte aligned - since return address is 64 bits in size, stacks with an odd number

of parameters are already aligned

e no spill area is used on stack, iterating over varargs requires a specific va_list implementation

Return values

e return values of pointer or integral type (<= 64 bits) are returned via the rax register

e floating point types are returned via the xmm0 register

e for types > 64 bits, a secret first parameter with an address to the return value is passed - the

passed in address will be returned in rax

o floating point values > 64 bits are returned via st0 and stl

Stack layout

Stack frame is always 16-byte aligned. Stack directly after function prolog:

register save area
local data (with padding)

arg n-1
parameter area . stack parameters
arg 6

return address

register save area
local data
parameter area

Figure 11: Stack layout on x64 System V (Linux/*BSD)
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D.2.3 System V syscalls

Parameter passing

syscall is issued via the syscall instruction

e kernel destroys registers rcx and r11

e syscall number is set in rax

e params are passed in the following registers in this order: rdi, rsi, rdx, rcx, r8, r9
e no stack in use, meaning syscalls are in theory limited to six arguments

e register rax holds the return value (values in between -4095 and -1 indicate errors)
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D.3 PowerPC (32bit) Calling Conventions
Overview
o Word size is 32 bits

Big endian (MSB) and litte endian (LSB) operating modes.

Processor operates on floats in double precision floating point arithmetc (IEEE-754) values di-
rectly (single precision is converted on the fly)

Apple macos/Mac OS X/Darwin PPC is specified in "Mac OS X ABI Function Call Guide” [31].
It uses Big Endian (MSB)

Linux PPC 32-bit ABI is specified in "LSB for PPC" [32] which is based on "System V ABI". It
uses Big Endian (MSB)

PowerPC EABI is defined in the "PowerPC Embedded Application Binary Interface 32-Bit
Implementation” [33]

There is also the " PowerOpen ABI"[35], a nearly identical version of it is used in AIX

dyncall support

Dyncall and dyncallback are supported for PowerPC (32bit) Big Endian (MSB), for Darwin's and
System V's calling convention.
Dyncall can also be used to issue syscalls by using the syscall number as target parameter and selecting
the correct mode.

D.3.1 Mac 0OS X/Darwin

Registers and register usage

Parameter passing

stack grows down

stack parameter order: right-to-left

caller cleans up the stack

the first 8 integer parameters are passed in registers gpr3-gprl0

the first 13 floating point parameters are passed in registers fprl-fprl3

64 bit arguments are passed as if they were two 32 bit arguments, without skipping registers for
alignment (this means passing half via a register and half via the stack is allowed)

if a float parameter is passed via a register, gpr registers are skipped for subsequent integer
parameters (based on the size of the float - 1 register for single precision and 2 for double
precision floating point values)

the caller pushes subsequent parameters onto the stack

for every parameter passed via a register, space is reserved in the stack parameter area (in order
to spill the parameters if needed - e.g. varargs)
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Name Brief description

gpr0 scratch

gprl stack pointer

gpr2 scratch

gpr3,gprd return value, parameter 0 and 1 for integer or pointer, scratch
gpr5-gprl0  parameter 2-7 for integer or pointer parameters, scratch
gprll preserve

gprl2 branch target for dynamic code generation

gprl3-31 preserve

fpr0 scratch

fprl floating point return value, floating point parameter 0 (always double precision)
fpr2-fpr13  floating point parameters 1-12 (always double precision)

fpr14-fpr31
vO-vl
v2-v13
v14-v19
v20-v31

Ir

ctr

crO-cr7

preserve

scratch

vector parameters

scratch

preserve

link-register, scratch

count-register, scratch

conditional register fields, each 4-bit wide (cr0-crl and crb-cr7 are scratch)

Table 26: Register usage on Darwin PowerPC 32-Bit

e ellipsis calls take floating point values in int and float registers (single precision floats are promoted
to double precision as required by ellipsis calls)

e all nonvector parameters are aligned on 4-byte boundaries

e vector parameters are aligned on 16-byte boundaries

e composite parameters with size of 1 or 2 bytes occupy low-order bytes of their 4-byte area.
INCONSISTENT with other 32-bit PPC binary interfaces. In AlX and mac OS 9, padding bytes
always follow the data structure

e composite parameters 3 bytes or larger in size occupy high-order bytes

e integer parameters < 32 bit are right-justified (meaning occupy higher-address bytes) in their
4-byte slot on the stack, requiring extra-care for big-endian targets

Return values

Stack layout

return values of integer <= 32bit or pointer type use gpr3

64 bit integers use gpr3 and gpr4 (hiword in gpr3, loword in gpré4)
floating point values are returned via fprl

structures <= 64 bits use gpr3 and gpré

for types > 64 bits, a secret first parameter with an address to the return value is passed

Stack frame is always 16-byte aligned. Prolog opens frame with additional, fixed space for a linkage
area, to hold a number of values (not all of them are required to be saved, though). Stack directly
after function prolog:
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register save area
local data

last arg
. stack parameters
9th word of arg data
parameter area

gprl0

spill area (as needed) caller's frame

gpr3

reserved

reserved

reserved

return address (callee saved)
condition reg (callee saved)
parent stack frame pointer

linkage area

register save area
local data
parameter area

current frame

linkage area

Figure 12: Stack layout on ppc32 Darwin

D.3.2 System V PPC 32-bit
Status
Registers and register usage

Parameter passing

e Stack pointer (rl) is always 16-byte aligned. The EABI differs here - it is 8-byte alignment.
e 8 general-purpose registers (r3-r10) for integer and pointer types.
e 8 floating-pointer registers (f1-f8) for float (promoted to double) and double types.

e Additional arguments are passed on the stack directly after the back-chain and saved return
address (8 bytes structure) on the callers stack frame.

e 04-bit integer data types are passed in general-purpose registers as a whole in two 32-bit general
purpose registers (an odd and an even e.g. r3 and r4), skipping an even integer register or passed
on the stack; they are never splitted into a register and stack part

e Ellipsis calls set CR bit 6

e integer parameters < 32 bit are right-justified (meaning occupy high-order bytes) in their 4-byte
area, requiring extra-care for big-endian targets

e no spill area is used on stack, iterating over varargs requires a specific va_list implementation

Return values
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Name Brief description

r0 scratch

rl stack pointer, preserve

r2 system-reserved

r3-r4 parameter passing and return value, scratch

r5-r10 parameter passing, scratch
r11-r12 scratch

r13 small data area pointer register

r14-r30 local variables, preserve

r31 used for local variables or environment pointer, preserve
fo scratch

f1 parameter passing and return value, scratch

f2-f8 parameter passing, scratch

f9-13 scratch
f14-f31 local variables, preserve
cr0-cr7  conditional register fields, each 4-bit wide (cr0-crl and cr5-cr7 are scratch)

Ir link register, scratch

ctr count register, scratch

xer fixed-point exception register, scratch
fpscr floating-point Status and Control Register

Table 27: Register usage on System V ABI PowerPC Processor

e 32-bit integers use register r3, 64-bit use registers r3 and r4 (hiword in r3, loword in r4).

e floating-point values are returned using register f1.

Stack layout

Stack frame is always 16-byte aligned. Stack directly after function prolog:

register save area
local data

last arg
parameter area \ - stack parameters caller’s frame
first arg passed via stack

return address (callee saved)

parent stack frame pointer

register save area
local data
parameter area

current frame

Figure 13: Stack layout on System V ABI for PowerPC 32-bit calling convention
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D.3.3 System V syscalls

Parameter passing

syscall is issued via the sc instruction

e kernel destroys registers r13

e syscall number is set in r0

e params are passed in registers r3 through r10

e no stack in use, meaning syscalls are in theory limited to eight arguments

e register r3 holds the return value, overflow flag in conditional register crQ signals errors in syscall
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D.4 PowerPC (64bit) Calling Conventions

Overview

Word size is 32 bits for historical reasons
Big endian (MSB) and litte endian (LSB) operating modes.
Apple Mac OS X/Darwin PPC is specified in "Mac OS X ABI Function Call Guide” [3I]. It uses

Big Endian (MSB).

Linux PPC 64-bit ABI is specified in " 64-bit PowerPC ELF Application Binary Interface Supplement” [36]

which is based on " System V ABI".

dyncall support

Dyncall and dyncallback are supported for PowerPC (64bit) Big Endian and Little Endian ELF
ABIs on System V systems. Mac OS X is not supported.
Dyncall can also be used to issue syscalls by using the syscall number as target parameter and selecting
the correct mode.

D.4.1 PPC64 ELF ABI

Registers and register usage

Name Brief description

gpr0 scratch

gprl stack pointer

gpr2 TOC base ptr (offset table and data for position independent code), scratch
gpr3 return value, parameter 0 for integer or pointer, scratch

gprd-gprl0  parameter 1-7 for integer or pointer parameters, scratch

gprll env pointer if needed, scratch

gprl2 used for exception handling and glink code, scratch

gprl3 used for system thread ID, preserve

gprl4-31 preserve

fpr0 scratch

fprl-fprd floating point return value, floating point parameter 0-3 (always double precision)
fpr5-fpr13  floating point parameters 4-12 (always double precision)

fpr14-fpr31
vO-v1
v2-v13
v14-v19
v20-v31

Ir

ctr

xer

fpscr
crO-cr7

preserve
scratch

vector parameters

scratch

preserve

link-register, scratch

count-register, scratch

fixed point exception register, scratch

floating point status and control register, scratch

conditional register fields, each 4-bit wide (cr0-crl and crb-cr7 are scratch)

Table 28: Register usage on PowerPC 64-Bit ELF ABI

Parameter passing
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e stack grows down

e stack parameter order: right-to-left
e caller cleans up the stack

e stack is always 16 byte aligned

e the stack pointer must be atomically updated (to avoid any timing window in which an interrupt
can occur with a partially updated stack), usually with the stdu (store doubleword with update)
instruction

e the first 8 integer parameters are passed in registers gpr3-gprl0
e the first 13 floating point parameters are passed in registers fprl-fprl3

e preserved registers are saved using a defined order (from high to low addresses): fpr* (64bit
aligned), gpr*, VRSAVE save word (32 bits), padding for alignment (4 or 12 bytes), v* (128bit
aligned)

e if a floating point parameter is passed via a register, a gpr registers is skipped for subsequent
integer parameters

e the caller pushes subsequent parameters onto the stack

e single precision floating point values use the second word in a doubleword

e a quad precision floating point argument is passed as two consecutive double precision ones
e integer types < 64 bit are sign or zero extended and use a doubleword

e ellipsis calls take floating point values in int and float registers (single precision floats are promoted
to double precision as required by ellipsis calls)

e space for all potential gpr* register passed arguments is reserved in the stack parameter area (in
order to spill the parameters if needed - e.g. varargs), meaning a minimum of 64 bytes to hold

gpr3-gprl0

e all nonvector parameters are aligned on 8-byte boundaries
e vector parameters are aligned on 16-byte boundaries

e integer parameters < 64 bit are right-justified (meaning occupy higher-address bytes) in their
8-byte slot on the stack, requiring extra-care for big-endian targets

Return values
e return values of integer <= 32bit or pointer type use gpr3 and are zero or sign extended depending
on their type
e 64 bit integers use gpr3
e floating point values are returned via fprl
e character arrays <= 8 bytes use gpr3, and are right justified

e for all structs/unions (regardless of size) or character arrays > 8 bytes, a secret first parameter
with an address to a caller allocated space is passed as first argument to the function (meaning
in gpr3), which is written to by the callee

Stack layout

Stack frame is always 16-byte aligned. Stack directly after function prolog:
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register save area
local data

parameter area

linkage area

register save area
local data
parameter area

linkage area

last arg
arg 8
gprl0

gpr3

TOC ptr reg
reserved
reserved

return address (callee saved)
condition reg (callee saved)

parent stack frame pointer

stack parameters

spill area (as needed)

Figure 14: Stack layout on ppc64 ELF ABI

D.4.2 System V syscalls

Parameter passing

e syscall is issued via the sc instruction

e kernel destroys registers r13

e syscall number is set in rQ

e params are passed in registers r3 through r10

e no stack in use, meaning syscalls are in theory limited to eight arguments

caller's frame

current frame

e register r3 holds the return value, overflow flag in conditional register cr0 signals errors in syscall
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D.5 ARM32 Calling Conventions

Overview

The ARM32 family of processors is based on the Advanced RISC Machines (ARM) processor ar-
chitecture (32 bit RISC). The word size is 32 bits (and the programming model is LLP64).
Basically, this family of microprocessors can be run in 2 major modes:

Mode Description
ARM 32bit instruction set
THUMB compressed instruction set using 16bit wide instruction encoding

For more details, take a look at the ARM-THUMB Procedure Call Standard (ATPCS) [18], the Proce-
dure Call Standard for the ARM Architecture (AAPCS) [19], as well as Debian's ARM EABI port [23]
and hard-float [24] wiki pages.

dyncall support

Currently, the dyncall library supports the ARM and THUMB mode of the ARM32 family (ATPCS

[18], EABI [23], the ARM hard-float (armhf) [23] varian, as well as Apple's calling convention based
on the ATPCS), excluding manually triggered ARM-THUMB interworking calls.
Also supported is armhf, a calling convention with register support to pass floating point numbers. FPA
and the VFP (scalar mode) procedure call standards, as well as some instruction sets accelerating DSP
and multimedia application like the ARM Jazelle Technology (direct Java bytecode execution, providing
acceleration for some bytecodes while calling software code for others), etc., are not supported by the
dyncall library.

D.5.1 ATPCS ARM mode

Registers and register usage

In ARM mode, the ARM32 processor has sixteen 32 bit general purpose registers, namely r0-rl15:

Name Alias  Brief description

r0 al parameter 0, scratch, return value
rl a2 parameter 1, scratch, return value
r2,r3 a3,ad parameters 2 and 3, scratch

r4-r9 vl-v6 permanent

r10 sl permanent

rll fp frame pointer, permanent

r12 ip scratch

r13 sp stack pointer, permanent

r14 Ir link register, permanent

rl5 pc program counter (note: due to pipeline, r15 points to 2 instructions ahead)

Table 29: Register usage on arm32

Parameter passing
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e stack parameter order: right-to-left
e caller cleans up the stack
e first four words are passed using r0-r3

e subsequent parameters are pushed onto the stack (in right to left order, such that the stack
pointer points to the first of the remaining parameters)

e if the callee takes the address of one of the parameters and uses it to address other parameters
(e.g. varargs) it has to copy - in its prolog - the first four words to a reserved stack area adjacent
to the other parameters on the stack

e parameters <= 32 bits are passed as 32 bit words

e 64 bit parameters are passed as two 32 bit parts (even partly via the register and partly via the
stack, although this doesn't seem to be specified in the ATPCS)

e structures and unions are passed by value, with the first four words of the parameters in r0-r3

e if return value is a structure, a pointer pointing to the return value's space is passed in r0, the
first parameter in rl, etc... (see return values)

o keeping the stack eight-byte aligned can improve memory access performance and is required by
LDRD and STRD on ARMV5TE processors which are part of the ARM32 family, so, in order to
avoid problems one should always align the stack (tests have shown, that GCC does care about
the alignment when using the ellipsis)

Return values

e return values <= 32 bits use r0
e 64 bit return values use rO and rl

e if return value is a structure, the caller allocates space for the return value on the stack in its
frame and passes a pointer to it in rQ

Stack layout

Stack directly after function prolog:
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register save area
local data

last arg caller’'s frame
. stack parameters
5th word of arg data
parameter area r3
r2
rl
r0 current frame

spill area (if needed)

register save area (with return address)
local data

parameter area

Figure 15: Stack layout on arm32

D.5.2 ATPCS THUMB mode

Status

e The ATPCS THUMB mode is untested.

e Ellipsis calls may not work.

o C-++ this calls do not work.

Registers and register usage

In THUMB mode, the ARM32 processor family supports eight 32 bit general purpose registers rO-r7
and access to high order registers r8-r1b:

Name  Alias  Brief description

r0 al parameter 0, scratch, return value
rl a2 parameter 1, scratch, return value
r2,r3 a3,a4 parameters 2 and 3, scratch
rd-r6  vl-v3 permanent

r7 v4 frame pointer, permanent

r8-rll v5-v8 permanent

rl12 ip scratch

rl13 sp stack pointer, permanent

rl4 Ir link register, permanent

rl5 pc program counter (note: due to pipeline, r15 points to 2 instructions ahead)

Table 30: Register usage on arm32 thumb mode

Parameter passing

e stack parameter order: right-to-left
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e caller cleans up the stack
e first four words are passed using r0-r3

e subsequent parameters are pushed onto the stack (in right to left order, such that the stack
pointer points to the first of the remaining parameters)

e if the callee takes the address of one of the parameters and uses it to address other parameters
(e.g. varargs) it has to copy - in its prolog - the first four words to a reserved stack area adjacent
to the other parameters on the stack

e parameters <= 32 bits are passed as 32 bit words

e 64 bit parameters are passed as two 32 bit parts (even partly via the register and partly via the
stack), although this doesn’t seem to be specified in the ATPCS)

e structures and unions are passed by value, with the first four words of the parameters in r0-r3

e if return value is a structure, a pointer pointing to the return value's space is passed in r0, the
first parameter in rl, etc. (see return values)

e keeping the stack eight-byte aligned can improve memory access performance and is required by
LDRD and STRD on ARMV5TE processors which are part of the ARM32 family, so, in order to
avoid problems one should always align the stack (tests have shown, that GCC does care about
the alignment when using the ellipsis)

Return values

e return values <= 32 bits use r0
e 64 bit return values use r0 and rl

e if return value is a structure, the caller allocates space for the return value on the stack in its
frame and passes a pointer to it in rQ

Stack layout

Stack directly after function prolog:
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register save area
local data

last arg
. stack parameters
5th word of arg data
parameter area r3
r2
rl
r0

spill area (if needed)

register save area (with return address)
local data

parameter area

Figure 16: Stack layout on arm32 thumb mode

D.5.3 EABI (ARM and THUMB mode)

The ARM EABI is very similar to the ABI outlined in ARM-THUMB procedure call standard (ATPCS)
[18] - however, the EABI requires the stack to be 8-byte aligned at function entries, as well as for 64 bit
parameters. The latter are aligned on 8-byte boundaries on the stack and 2-registers for a parameter
passed via register. In order to achieve such an alignment, a register might have to be skipped for
parameters passed via registers, or 4-bytes on the stack for parameters passed via the stack. Refer to
the Debian ARM EABI port wiki for more information [23].

Status

e The EABI THUMB mode is tested and works fine (contrary to the ATPCS).
e Ellipsis calls do not work.

o C++ this calls do not work.
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D.5.4 ARM on Apple’s iOS (Darwin) Platform (ARM and THUMB mode)

The iOS runs on ARMv6 (iOS 2.0) and ARMv7 (iOS 3.0) architectures. Both, ARM and THUMB are
available, code is usually compiled in THUMB mode.

Register usage

Name Alias  Brief description

r0 parameter 0, scratch, return value

rl parameter 1, scratch, return value

r2,r3 parameters 2 and 3, scratch

r4-r6 permanent

r7 frame pointer, permanent

r8 permanent

r9 permanent (iOS 2.0) / scratch (since iOS 3.0)

r10-r11 permanent

r12 scratch, intra-procedure scratch register (IP) used by dynamic linker

rl3 sp stack pointer, permanent

r14 Ir link register, permanent

rl5 pc program counter (note: due to pipeline, r15 points to 2 instructions ahead)

cpsr program status register

d0-d7 scratch, aliases s0-s15, on ARMv7 also as q0-q3; not accessible from Thumb mode on ARMv6
d8-d15 permanent, aliases s16-s31, on ARMv7 also as q4-q7; not accesible from Thumb mode on ARMv6
d16-d31 only available in ARMv7, aliases q8-q15

fpscr VFP status register

Table 31: Register usage on ARM Apple iOS

Parameter passing and Return values

The ABI is based on the AAPCS but with the following important differences:

e in ARM mode, r7 is used as frame pointer instead of r11 (so both, ARM and THUMB mode use
the same convention)

e r9 does not need to be preserved on iOS 3.0 and greater

Stack layout

Stack directly after function prolog:
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register save area (with return address)

register save area
local data

last arg caller's frame
. stack parameters
5th word of arg data @Q@Qverify
parameter area r3
r2
rl
r0 current frame

spill area (if needed)

local data

parameter area

Figure 17: Stack layout on arm32

D.5.5 ARM hard float (armhf)

Most debian-based Linux systems on ARMv7 (or ARMv6 with FPU) platforms use a calling convention
referred to as armhf, using 16 32-bit floating point registers of the FPU of the VFPv3-D16 extension
to the ARM architecture. Refer to the debian wiki for more information [24].

Code is little-endian, rest is similar to EABI with an 8-byte aligned stack, etc..

Register usage

Name  Alias  Brief description

r0 al parameter 0, scratch, non floating point return value

rl a2 parameter 1, scratch, non floating point return value

r2,r3 a3,a4 parameters 2 and 3, scratch

r4-r9 vl-v6 permanent

rl0 sl permanent

rll fp frame pointer, permanent

r12 ip scratch, intra-procedure scratch register (IP) used by dynamic linker

rl13 sp stack pointer, permanent

rl4 Ir link register, permanent

rl5 pc program counter (note: due to pipeline, r15 points to 2 instructions ahead)
cpsr program status register

s0 floating point argument, floating point return value, single precision

do floating point argument, floating point return value, double precision, aliases s0-s1
sl-s15 floating point arguments, single precision

dl-d7 aliases s2-s15, floating point arguments, double precision

fpscr VFP status register

Table 32: Register usage on armhf

Parameter passing

e stack parameter order: right-to-left

e caller cleans up the stack
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o first four non-floating-point words are passed using r0-r3

e out of those, 64bit parameters use 2 registers, either r0,rl or r2,r3 (skipped registers are left
unused)

e first 16 single-precision, or 8 double-precision arguments are passed via s0-s15 or d0-d7, respec-
tively (note that since s and d registers are aliased, already used ones are skipped)

e subsequent parameters are pushed onto the stack (in right to left order, such that the stack
pointer points to the first of the remaining parameters)

e note that as soon one floating point parameter is passed via the stack, subsequent single precision
floating point parameters are also pushed onto the stack even if there are still free S* registers

e float and double vararg function parameters (no matter if in ellipsis part of function, or not) are
passed like int or long long parameters, vfp registers aren't used

e if the callee takes the address of one of the parameters and uses it to address other parameters
(e.g. varargs) it has to copy - in its prolog - the first four words (for first 4 integer arguments)
to a reserved stack area adjacent to the other parameters on the stack

e parameters <= 32 bits are passed as 32 bit words
e structures and unions are passed by value, with the first four words of the parameters in r0-r3

e if return value is a structure, a pointer pointing to the return value's space is passed in r0, the
first parameter in rl, etc. (see return values)

e callee spills, caller reserves spill area space, though

Return values

e non floating point return values <= 32 bits use r0
e non floating point 64-bit return values use r0 and rl
e single precision floating point return value uses sO

e double precision floating point return value uses dO

e if return value is a structure, the caller allocates space for the return value on the stack in its
frame and passes a pointer to it in r0

Stack layout

Stack directly after function prolog:
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register save area
local data

last arg
. stack parameters
first arg passed via stack
parameter area r3
r2
rl
r0

spill area (if needed)

register save area (with return address)
local data

parameter area

Figure 18: Stack layout on arm32 armhf

D.5.6 Architectures

The ARM architecture family contains several revisions with capabilities and extensions (such as thumb-
interworking, more vector registers, ...) The following table sums up the most important properties of
the various architecture standards, from a calling convention perspective.

caller’'s frame

current frame

Arch Platforms Details

ARMv4

ARMvAT  ARM 7, ARM 9, Neo FreeRunner (OpenMoko)

ARMv5 ARM 9E BLX instruction available

ARMv6 No vector registers available in thumb
ARMv7 iPod touch, iPhone 3GS/4, Raspberry Pi 2 VFP, armhf convention on some platforms
ARMv8 iPhone 6 and higher 64bit support

Table 33: Overview of ARM Architecture, Platforms and Details
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D.6 ARMG64 Calling Conventions

Overview

ARMV8 introduced the AArch64 calling convention. ARM64 chips can be run in 64 or 32bit mode,
but not by the same process. Interworking is only intra-process.
The word size is defined to be 32 bits, a dword 64 bits. Note that this is due to historical reasons
(terminology didn't change from ARM32).
For more details, take a look at the Procedure Call Standard for the ARM 64-bit Architecture [20].

dyncall support

The dyncall library supports the ARM 64-bit AArch64 PCS ABI, as well as Apple’s and Microsoft's
conventions which are derived from it, for both, calls and callbacks.

D.6.1 AAPCS64 Calling Convention

Registers and register usage

ARMG64 features thirty-one 64 bit general purpose registers, namely r0-r30, which are referred to
as either x0-x30 for 64bit access, or w0-w30 for 32bit access (with upper bits either cleared or sign
extended on load).

Also, there is sp/xzr/wzr, a register with restricted use, used for the stack pointer in instructions
dealing with the stack (sp) or a hardware zero register for all other instructions xzr/wzr, and pc, the
program counter. Additionally, there are thirty-two 128 bit registers v0-v31, to be used as SIMD and
floating point registers, referred to as q0-q31, d0-d31 and s0-s31, respectively, depending on their use:

Name Brief description

x0-x7 parameters, scratch, return value

x8 indirect result location pointer

x9-x15  scratch

x16 permanent in some cases, can have special function (IP0), see doc

x17 permanent in some cases, can have special function (IP1), see doc

x18 reserved as platform register, advised not to be used for handwritten, portable asm, see
doc

x19-x28 permanent

x29 permanent, frame pointer

x30 permanent, link register

sp permanent, stack pointer

pc program counter

Table 34: Register usage on arm64

Parameter passing

stack parameter order: right-to-left

caller cleans up the stack

first 8 integer arguments are passed using x0-x7

first 8 floating point arguments are passed using d0-d7
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e subsequent parameters are pushed onto the stack

e if the callee takes the address of one of the parameters and uses it to address other parameters
(e.g. varargs) it has to copy - in its prolog - the first 8 integer and 8 floating-point registers to
a reserved stack area adjacent to the other parameters on the stack (only the unnamed integer
parameters require saving, though)

e structures and unions are passed by value, with the first four words of the parameters in r0-r3

e if return value is a structure, a pointer pointing to the return value's space is passed in r0, the
first parameter in rl, etc... (see return values)

e stack is required to be throughout eight-byte aligned

Return values

e integer return values use x0
e floating-point return values use dO

e otherwise, the caller allocates space, passes pointer to it to the callee through x8, and callee
writes return value to this space

Stack layout

Stack directly after function prolog:

register save area
local data

arg n-1 caller’s frame
e stack parameters
arg 8
x7

parameter area

x? (first unnamed reg)

o7 spill area (if needed)

current frame

q0

register save area (with return address)
local data

parameter area

Figure 19: Stack layout on arm64
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D.6.2 Apple’s ARM64 Function Calling Convention

Overview

Apple’s ARM64 calling convention is based on the AAPCS64 standard, however, diverges in some
ways. Only the differences are listed here, for more details, take a look at Apple’s official documentation
[21].

e arguments passed via stack use only the space they need, but are subject to type alignment
requirements (which is 1 byte for char and bool, 2 for short, 4 for int and 8 for every other type)

e caller is required to sign and zero-extend arguments smaller than 32bits

D.6.3 Microsoft’s ARM64 Function Calling Convention

Overview

Microsoft’'s ARM64 calling convention is based on the AAPCS64 standard, however, diverges for
variadic functions. Only the differences are listed here, for more details, take a look at Microsoft's
official documentation [22].

e variadic function calls do not use any SIMD or floating point registers (for fixed and variable
args), meaning first 8 params are passed via x0-x7, the rest via the stack
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D.7 MIPS32 Calling Conventions

Overview

Multiple revisions of the MIPS Instruction set exist, namely MIPS I, MIPS II, MIPS IlI, MIPS 1V,
MIPS32 and MIPS64. Nowadays, MIPS32 and MIPS64 are the main ones used for 32-bit and 64-bit
instruction sets, respectively.

Given MIPS processors are often used for embedded devices, several add-on extensions exist for the
MIPS family, for example:

MIPS-3D simple floating-point SIMD instructions dedicated to common 3D tasks.
MDMX (MaDMaX) more extensive integer SIMD instruction set using 64 bit floating-point registers.

MIPS16e adds compression to the instruction stream to make programs take up less room (allegedly
a response to the THUMB instruction set of the ARM architecture).

MIPS MT multithreading additions to the system similar to HyperThreading.

Unfortunately, there is actually no such thing as " The MIPS Calling Convention”. Many possible
conventions are used by many different environments such as O32[37], 064[38], N32[39], N64[39],
EABI[40] and NUBI4I].

dyncall support

Currently, dyncall supports for MIPS 32-bit architectures the widely-used O32 calling convention
(for all four combinations of big/little-endian, and soft/hard-float targets), as well as EABI (little-
endian/hard-float, which is used on the Homebrew SDK for the Playstation Portable). dyncall currently
does not support MIPS16e (contrary to the like-minded ARM-THUMB, which is supported). Both,
calls and callbacks are supported.
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D.7.1 MIPS EABI 32-bit Calling Convention

Register usage

Name Alias Brief description

$0 $zero hardware zero, scratch

$1 $at assembler temporary, scratch

$2-$3 $v0-$vl integer results, scratch

$4-$11 $a0-$a7 integer arguments, or double precision float arguments, scratch
$12-$15,%24 $t4-$t7,5t8 integer temporaries, scratch

$25 $t9 integer temporary, address of callee for PIC calls (by convention), scratch
$16-$23 $s0-$s7 preserve

$26,$27 $kt0,$ktl reserved for kernel

$28 $Sgp global pointer, preserve

$29 $sp stack pointer, preserve

$30 $s8/$fp frame pointer (some assemblers name it $fp), preserve

$31 $ra return address, preserve

hi, lo multiply/divide special registers

$f0,$f2 float results, scratch

$f1,$£3,$f4-$f11,$f20-$23 float temporaries, scratch

$f12-$f19 single precision float arguments, scratch

Table 35: Register usage on MIPS32 EABI calling convention

Parameter passing

e Stack grows down

e Stack parameter order: right-to-left

e Caller cleans up the stack

e first 8 integers (<= 32bit) are passed in registers $a0-$a7

e first 8 single precision floating point arguments are passed in registers $f12-$f19
e 64-bit stack arguments are always aligned to 8 bytes

e 64-bit integers or double precision floats are passed in two general purpose registers starting at
an even register number, skipping one odd register

e if either integer or float registers are used up, the stack is used

e if the callee takes the address of one of the parameters and uses it to address other unnamed
parameters (e.g. varargs) it has to copy - in its prolog - the the argument registers to a reserved
stack area adjacent to the other parameters on the stack (only the unnamed integer parameters
require saving, though)

e float registers don’'t seem to ever need to be saved that way, because floats passed to an ellipsis
function are promoted to doubles, which in turn are passed in a? register pairs, so only $a0-$a7
are need to be spilled

e results are returned in $v0 (32-bit), $v0 and $v1 (64-bit), $f0 or $f0 and $f2 (2 x 32 bit float
e.g. complex)
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Stack layout

Stack directly after function prolog:

register save area
local data

last arg caller’'s frame
e stack parameters
first arg passed via stack

$a7

parameter area

spill area (if needed)
$a? (first unnamed reg)

. . current frame
register save area (with return address)

local data

parameter area

Figure 20: Stack layout on MIPS EABI 32-bit calling convention
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D.7.2 MIPS 032 32-bit Calling Convention

Register usage

Name Alias Brief description

$0 $zero hardware zero

$1 $at assembler temporary

$2-$3 $v0-$vl return value (only integer on hard-float targets), scratch

$4-$7 $a0-%a3 first arguments (only integer on hard-float targets), scratch
$8-$15,$24 $t0-$t7,5t8 temporaries, scratch

$25 $t9 temporary, holds address of called function for PIC calls (by convention)
$16-$23 $s0-$s7 preserved

$26,$27 $k0,$k1 reserved for kernel

$28 $gp global pointer, preserved by caller

$29 $sp stack pointer, preserve

$30 $s8/%fp frame pointer (some assemblers name it $fp), preserve

$31 $ra return address, preserve

hi, lo multiply/divide special registers

$f0-$f3 only on hard-float targets: float return value, scratch
$f4-$f11,$f16-$f19 only on hard-float targets: float temporaries, scratch

$f12-$f15 only on hard-float targets: first floating point arguments, scratch
$f20-$f31 only on hard-float targets: preserved

Table 36: Register usage on MIPS 032 calling convention

Parameter passing

e Stack grows down
e Stack parameter order: right-to-left
e Caller cleans up the stack

e Caller is required to always leave a 16-byte spill area for $a0-$a3 at the end of its frame, to be
used and spilled to by the callee, if needed

e The different stack areas (local data, register save area, parameter area) are each aligned to 8
bytes

e generally, first four 32bit arguments are passed in registers $a0-$a3, respectively (only on hard-
float targets: see below for exceptions if first arg is a float)

e subsequent parameters are passed vie the stack

e 64-bit params passed via registers are passed using either two registers (starting at an even
register number, skipping an odd one if necessary), or via the stack using an 8-byte alignment

e only on hard-float targets: if the very first call argument is a float, up to 2 floats or doubles can
be passed via $f12 and $f14, respectively, for first and second argument

e only on hard-float targets: if any arguments are passed via float registers, skip $a0-$a3 for
subsequent arguments as if the values were passed via them

e only on hard-float targets: note that if the first argument is not a float, but the second, it'll get
passed via the $a? registers
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e results are returned in $v0 and $v1, with $vO for all values < 64bit (only integer on hard-float

targets)

e only on hard-float targets: floating point results are returned in $f0 (32-bit float), or $f0 and $f3

(64bit float)

e single precision float parameters (32 bit) are right-justified in their 8-byte slot on the stack on
big endian targets, as they aren’t promoted Q@@

Stack layout

Stack directly after function prolog:

register save area (with return address)
local data (and padding)

parameter area

register save area
local data

parameter area

padding (if needed)
last arg

first arg passed via stack
$a3
$a2
$al
$a0

stack parameters

spill area

Figure 21: Stack layout on MIPS 032 calling convention

78

caller's frame

current frame



D.8 MIPS64 Calling Conventions

Overview

There are two main ABIs in use for MIPS64 chips, N64[39] and N32[39]. Both are basically the
same, except that N32 uses ILP32 as programming model (32-bit pointers and long integers), whereas
N64 uses LP64 (64-bit pointers and long integers). All registers of a MIPS64 chip are considered to
be 64-bit wide, even for the N32 calling convention.

The word size is defined to be 32 bits, a dword 64 bits. Note that this is due to historical reasons
(terminology didn't change from MIPS32).

Other than that there are correspoding 64-bit versions other MIPS32 ABIs, e.g. the EABI[40] and
064[38].

dyncall support

For MIPS 64-bit machines, dyncall supports the N64 calling conventions for calls and callbacks (for
all four combinations of big/little-endian, and soft/hard-float targets). The N32 calling convention
might work - it used to, but hasn't been tested, recently.

D.8.1 MIPS N64 Calling Convention

Register usage

Name Alias Brief description

$0 $zero hardware zero

$1 $at assembler temporary, scratch

$2-$3 $v0-$v1 return value (only integer on hard-float targets), scratch
$4-$11 $a0-$a7 first arguments (only integer on hard-float targets), scratch
$12-$15,524 $t4-$t7,5t8 temporaries, scratch

$25 $t9 temporary, address callee for all PIC calls (by convention), scratch
$16-$23 $s0-$s7 preserve

$26,$27 $kt0,$ktl reserved for kernel

$28 $2p global pointer, preserve

$29 $sp stack pointer, preserve

$30 $s8 frame pointer, preserve

$31 $ra return address, preserve

hi, lo multiply/divide special registers

$f0,$2 only on hard-float targets: float results, scratch
$f1,$3,$f4-$f11 only on hard-float targets: float temporaries, scratch
$f12-$f19 only on hard-float targets: float arguments, scratch
$f20-$23 only on hard-float targets: float temporaries, scratch
$f24-%$f31 only on hard-float targets: preserved

Table 37: Register usage on MIPS N64 calling convention

Parameter passing

e Stack grows down
e Stack parameter order: right-to-left

e Caller cleans up the stack
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e generally, first 8 params >= 64-bit are passed via registers

e for hard-float targets: register arguments are passed via $a0-$a7 for integers and $f12-$f19 for
floats - with mixed float and int parameters, some registers are left out (e.g. first parameter ends
up in $a0 or $f12, second in $al or $f13, etc.)

e for soft-float targets: register arguments are passed via $a0-$a7

e subsequent arguments are pushed onto the stack

e all stack entries are 64-bit aligned

e all stack regions are 16-byte aligned

e results are returned in $v0, and for a second one $v1 is used

e only on hard-float targets: floating point results are returned in $f0

e if the callee takes the address of one of the parameters and uses it to address other unnamed
parameters (e.g. varargs) it has to copy - in its prolog - the the argument registers to a reserved
stack area adjacent to the other parameters on the stack (only the unnamed integer parameters
require saving, though)

e float arguments passed in the variable part of a vararg call are passed like integers, meaning float
registers don't ever need to be saved that way, so only $a0-$a7 are need to be spilled

e quad precision float arguments are passed in even-odd register pairs, skipping one register if
needed

e integer parameters < 64 bit are right-justified (meaning occupy higher-address bytes) in their
8-byte slot on the stack, requiring extra-care for big-endian targets

e single precision float parameters (32 bit) are left-justified in their 8-byte slot on the stack, but
are right justified in fp-registers on big endian targets, as they aren’t promoted (actually, official
docs says "undecided”, but real world implementations seem to use what is described here)

Stack layout

Stack directly after function prolog:

register save area

local data
arg n-1 caller’s frame
7. stack parameters
arg 8
parameter area &
$a7

spill area (if needed)

$a? (first unnamed reg) current frame

register save area (with return address)
local data

parameter area

Figure 22: Stack layout on MIPS N64 calling convention
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D.8.2 MIPS N32 Calling Convention

Despite what one might think given the name, this is a MIPS 64-bit calling convention. As mentioned
in the overview of this chapter, it is nearly identical to the N64 one, the differences being:

e uses ILP32 as programming model instead of LP64

e floating point registers $f20-$f23 are to be preserved
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D.9 SPARC Calling Conventions

Overview

The SPARC family of processors is based on the SPARC instruction set architecture, which comes
in basically three revisions, V7, V8[29][27] and V9[30]|28]. The former two are 32-bit whereas the
latter refers to the 64-bit SPARC architecture (see next chapter). SPARC uses big endian byte order.
The word size is defined to be 32 bits.

dyncall support
dyncall fully supports the SPARC 32-bit instruction set (V7 and V8), for calls and callbacks.

D.9.1 SPARC (32-bit) Calling Convention

Register usage

e 32 single floating point registers (fO-f31, usable as 8 quad precision q0,94,98,...,q28, 16 double
precision d0,d2,d4,...,d30)

e 32 32-bit integer/pointer registers out of a bigger (vendor/model dependent) number that are
accessible at a time (8 are global ones (g*), whereas the remaining 24 form a register window
with 8 input (i*), 8 output (0o*) and 8 local (I*) ones)

e calling a function shifts the register window, the old output registers become the new input
registers (old local and input ones are not accessible anymore)

Name Alias Brief description

%g0 %r0 Read-only, hardwired to 0

%g1-%g7 %r1-%r7 Global

%00,%01 and %i0,%il  %r8,%r9 and %r24,%r25 Output and input argument registers, return value
%02-%05 and %i2-%i5 %r10-%r13 and %r26-%r29 Output and input argument registers

%06 and %i6 %r14 and %r30, %sp and %fp Stack and frame pointer

%o07 and %i7 %r15 and %r31 Return address (caller writes to 07, callee uses i7)
%I0-%I7 %r16-%r23 preserve

%f0,%f1 Floating point return value

%f2-%f31 scratch

Table 38: Register usage on sparc calling convention

Parameter passing

e stack grows down

e stack parameter order: right-to-left

caller cleans up the stack

stack always aligned to 8 bytes

o first 6 integers and floats are passed independently in registers using %00-%05

for every other argument the stack is used
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e all arguments <= 32 bit are passed as 32 bit values

e 64 bit arguments are passed like two consecutive <= 32 bit values (which allows for an argument
to be split between the stack and %i5)

e minimum stack size is 64 bytes, b/c stack pointer must always point at enough space to store
all %i* and %I* registers, used when running out of register windows

e if needed, register spill area is adjacent to parameters

Return values
e results are expected by caller to be returned in %00/%o01 (after reg window restore, meaning
callee writes to %i0/%il) for integers
o %f0/%f1 are used for floating point values

e structs/unions are returned in a space allocated by the caller, with a pointer to it passed as a
additional, hidden stack parameter (see below)

Stack layout

Stack directly after function prolog:

local data (and padding)

arg n-1
e stack parameters
7th word of arg data
parameter area %05 caller’s frame
. spill area
%00

struct/union return pointer

register save area (%i* and %[*)

local data (and padding)
parameter area current frame

Figure 23: Stack layout on sparc32 calling convention
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D.10 SPARC64 Calling Conventions

Overview

The SPARC family of processors is based on the SPARC instruction set architecture, which comes
in basically three revisions, V7, V8[29][27] and V9[30][28]. The former two are 32-bit (see previ-
ous chapter) whereas the latter refers to the 64-bit SPARC architecture. SPARC uses big endian byte
order, however, V9 supports also little endian byte order, but for data access only, not instruction access.

There are two proposals, one from Sun and one from Hal, which disagree on how to handle some
aspects of this calling convention.

dyncall support
dyncall fully supports the SPARC 64-bit instruction set (V9), for calls and callbacks.

D.10.1 SPARC (64-bit) Calling Convention

e 32 double precision floating point registers (d0,d2,d4,...,d62, usable as 16 quad precision ones
q0,94,98,...g60, and also first half of them are usable as 32 single precision registers f0-f31)

e 32 64-bit integer/pointer registers out of a bigger (vendor/model dependent) number that are
accessible at a time (8 are global ones (g*), whereas the remaining 24 form a register window
with 8 input (i*), 8 output (0*) and 8 local (I*) ones)

e calling a function shifts the register window, the old output registers become the new input
registers (old local and input ones are not accessible anymore)

e stack and frame pointer are offset by a BIAS of 2047 (see official doc for reasons)

Name Alias Brief description

%g0 %r0 Read-only, hardwired to 0

%g1-%g7 %r1-%r7 Global

%00-%03 and %i0-%i3 %r8-%r11 and %r24-%r27 Output and input argument registers, return value
%04,%05 and %i4,%i5 %r12,%r13 and %r28,%r29 Output and input argument registers

%06 and %i6 %r14 and %r30, %sp and %fp  Stack and frame pointer (NOTE, offset with a BIAS of 2
%07 and %i7 %r15 and %r31 Return address (caller writes to o7, callee uses i7)
%I10-%I7 %r16-%r23 preserve

%d0,%d2,%d4,%d6 scratch, Floating point arguments, return value
%d8,%d10,...,%d14 scratch, Floating point arguments
%d16,%d18,...,%d30 scratch (preserve for Hal), Floating point arguments
%d32,%d34,...,%d62 scratch (preserve for Hal)

Table 39: Register usage on sparc64 calling convention

Parameter passing

e stack grows down
e stack parameter order: right-to-left
e caller cleans up the stack

e stack frame is always aligned to 16 bytes
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e first 6 integers are passed in registers using %00-%05

e first 8 quad precision floating point args (or 16 double precision, or 32 single precision) are passed
in floating point registers (%q0,%q4, ...,%q28 or %d0,%d2,...,%d30 or %f0-%f31, respectively)

e for every other argument the stack is used

e single precision floating point args are passed in odd %f* registers, and are
their 8-byte space on the stack

"right aligned” in

e for every argument passed, corresponding %o*, %f* register or stack space is skipped (e.g.
passing a double as 3rd call argument, %d4 is used and %02 is skipped)

e all arguments <= 64 bit are passed as 64 bit values

e minimum stack size is 128 bytes, b/c stack pointer must always point at enough space to store
all %i* and %l* registers, used when running out of register windows

e if needed, register spill area (both, integer and float arguments are spilled in order) is adjacent
to parameters

Return values
e results are expected by caller to be returned in %00-%03 (after reg window restore, meaning
callee writes to %i0-%i3) for integers
e %d0,%d2,%d4,%d6 are used for floating point values

e the fields of structs/unions up to 32b are returned via the respective registers mentioned in the
previous bullet points

e structs/unions >= 32b are returned in a space allocated by the caller, with a pointer to it passed
as first parameter to the function called (meaning in %00)

Stack layout

Stack directly after function prolog:

local data (and padding)
arg n-1
o stack parameters
arg 6 ,
arameter area caller’'s frame
P %05
e spill area
%00
register save area (%i* and %[*)
local data (and padding)
parameter area current frame

Figure 24: Stack layout on sparc64 calling convention
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