dyncall Library

Daniel ADLER (dadler@uni-goettingen.de)
Tassilo PHILIPP (tphilipp@potion-studios.com)

July 6, 2009

\

Contents

1 Motivation

[3__Building the library|
[3.1 Requirements|
[3.2 Supported/tested platforms and build systems|

4 Bindings to programming language

4.1.1 Dynamic loading of code]
[4.1.2 Functionsl
4.1.3 Signatures| L
4.2 Python language bindings|o o
4. anguage bindings|
[#4 Ruby language bindings|

[5_Library Design|
[B.1 Design considerations]

0 Developer

[6.1 Projectroot]
6.2 Test suites

/__Epilog
[7.1 Stability and security considerations|
7.2 Embedding|.
[73 Multi-threading]
[7.4 Supported types|
/.5 Roadmap|.

[[.6 Related libraries]

[A"Dyncall C Tibrary API]|

A.1 Supported C/C++ argument and return types|
A.2__Call Virtual Machine - CallVM|

[B Dynload C Tibrary AP]|

[B.1 loadingcodel
|B.§ Retrlevmg ?unctlon§|

[C _Calling Conventions|

.1 x86 Calling Conventions|.
C 1.1 cdeclf.

.................
[C.2 x64 Calling Convention|
.............
|C.2.2° System V (Linux / *BSD / MacOS X)|

|C.3 PowerPC (32bit) Calling Convention|
C.3.1 Mac OS X/Darwin|
3.2 stem 32-bit] . ..o
4 alling Convention|
C41 ARMmodel
C42 THUMB mode

IC.5 MIPS Calling Convention|
IC.5.1 MIPS EABI 32-bit Calling Convention|

[DTiterature]

20
20
21
21
21
21
22
22
24

25
25
25

26
26
26
27
29
30
31
32
33
35
36
37
37
39
41
41
43
46
46
48
50
50

52

List of Tables

1L Supported platforms| 9
12 Type signature encoding for function call data types|. 14
13 lype signature examples of C function prototypes| 15
|4 Type signature encoding for Python bindings|. 15
5 pe signature encoding for R bindings|. 16
ype signature encoding for Ruby bindings|. 16

[z C interface conventions| 20
[Supported C/C++ argument and return types|. 20
[CallVM calling convention modes|. 22
[0 Register usage on x86 cdecl calling convention| 26
11 Register usage on x86 fastcall (MS) calling convention| 27
12 Register usage on x86 fastcall (GNU) calling convention| 29
13 Register usage on x86 fastcall (Borland) calling convention| 30
14 Register usage on x86 fastcall (Watcom) calling convention|. 31
[I5 Register usage on x86 stdcall calling convention| 32
16 Register usage on x86 thiscall (MS) calling convention| 34
17 Register usage on x86 thiscall (GNU) calling convention|. 35
[I8 Register usage on x86 pascal calling convention| 36
[19 Register usage on x64 MS Windows platform|, 38
[20 Register usage on x64 System V (Linux/*BSD)] 39
1 Register usage on Darwin PowerPC 32-Bit| 41
egister usage on System ower FOCessor| 44

23 Register usage on arm9¢| 46
24 Register usage on arm9e thumb mode| 48
25 Register usage on mips32 eabi calling convention| 50

List of Figures

11 Stack layout on x86 cdecl calling convention| 27
2 tack layout on x86 fastcall (MS) calling convention| 28
|3 Stack layout on x86 fastcall (GNU) calling convention|. 30
Stack layout on x86 fastcall (Borland) calling convention| 31

F‘S Stack layout on x86 fastcall (Watcom) calling convention| 32
16 Stack layout on x86 stdcall calling convention] 33
7 tack layout on x86 thiscall (MS) calling convention| 34
[8 Stack layout on x86 thiscall (GNU) calling convention|. 35
[0 Stack layout on x86 pascal calling convention] 37
1 tack layout on x64 Microsoft platform| 39
|11 Stack layout on x64 System V (Linux/*BSD)| 40
[I27 Stack Tayout on ppc32 Darwin| 43
113 Stack layout on System V ABI for PowerPC 32-bit calling convention| 45
[14 Stack layout on arm9e|. L 47
|15 Stack layout on arm9e thumb mode]o o000 49
tack layout on mips32 eabi calling convention|, 51

Listings

[Cfunctioncalll 6
12 Assembly X86 32-bit function calll oo 6
13 Foreign function call in C| 8

14 Dyncall Clibrary example| 0 . oo

15 Dyncall Python bindings example|, .
[6 Dyncall R bindings example|

1 Motivation

Interoperability between programming languages is a desirable feature in complex software systems.
While functions in scripting languages and virtual machine languages can be called in a dynamic man-
ner, statically compiled programming languages such as C, C++ and Objective-C lack this ability.

The majority of systems use C function interfaces as their system-level interface. Calling these (foreign)
functions from within a dynamic environment often involves the development of so called " glue code”
on both sides, the use of external tools generating communication code, or integration of other mid-
dleware fulfilling that purpose. However, even inside a completely static environment, without having
to bridge multiple languages, it can be very useful to call functions dynamically. Consider, for example,
message systems, dynamic function call dispatch mechanisms, without even knowing about the target.

The dyncall library project provides a clean and portable C interface to dynamically issue calls to
foreign code using small call kernels written in assembly. Instead of providing code for every bridged
function call, which unnecessarily results in code bloat, only a modest number of instructions are used
to invoke all the calls.

1.1 Static function calls in C

The C programming language and its direct derivatives are limited in the way function calls are handled.
A C compiler regards a function call as a fully qualified atomic operation. In such a statically typed
environment, this includes the function call's argument arity and type, as well as the return type.

1.2 Anatomy of machine-level calls

The process of calling a function on the machine level yields a common pattern:

1. The target function’s calling convention dictates how the stack is prepared, arguments are passed,
results are returned and how to clean up afterwards.

2. Function call arguments are loaded in registers and on the stack according to the calling conven-
tion that take alignment constraints into account.

3. Control flow transfer from caller to callee.

4. Process return value, if any. Some calling conventions specify that the caller is responsible for
cleaning up the argument stack.

The following example depicts a C source and the corresponding assembly for the X86 32-bit
processor architecture.

extern void f(int x, double y,float z);
void caller ()

{
£(1,2.0,3.0f);
}
Listing 1: C function call
.global £ ; external symbol ’f°
caller:
push 40400000H ; 3.0f (32 bit float)

; 2.0 (64 bit float)
push 40000000H ; low DWORD
push OH ; high DWORD
push 1H ;1 (32 bit integer)
call f ; call ’f’
add esp, 16 ; cleanup stack

Listing 2: Assembly X86 32-bit function call

2 Overview

The dyncall library encapsulates architecture-, OS- and compiler-specific function call semantics in a
virtual

bind argument parameters from left to right and then call

interface allowing programmers to call C functions in a completely dynamic manner. In other words,
instead of calling a function directly, the dyncall library provides a mechanism to push the function
parameters manually and to issue the call afterwards.
Since the idea behind this concept is similar to call dispatching mechanisms of virtual machines, the
object that can be dynamically loaded with arguments, and then used to actually invoke the call, is
called CallVM. It is possible to change the calling convention used by the CallVM at run-time. Due
to the fact that nearly every platform comes with one or more calling conventions, the dyncall library
project intends to be an open-source approach to the variety of compiler-specific binary interfaces,
platform specific subtleties, and so on...

The core of the library consists of dynamic implementations of different calling conventions written in
assembler. Although the library aims to be highly portable, some assembler code needs to be written for
nearly every platform/compiler/OS combination. Unfortunately, there are architectures we just don't
have at home or work. If you want to see dyncall running on such a platform, feel free to send in code
and patches, or even to donate hardware you don't need anymore. Check the supported platforms
section for an overview of the supported platforms and the different calling convention sections for
details about the support.

2.1 Features
e A portable and extendable function call interface for the C programming language.

e Ports to major platforms including Windows, Mac OS X, Linux, BSD derivates, Playstation
Portable and Nintendo DS.

e Add-on language bindings to Python,R,Ruby.

e High-level state machine design using C to model calling convention parameter transfer.
e One assembly hybrid call routine per calling convention.

e Formatted call, ellipsis function API.

e Comprehensive test suite.

2.2 Showcase

Foreign function call in C

This section demonstrates how the foreign function call is issued without, and then with, the help
of the dyncall library and scripting language bindings.

double call_as_sqrt(void* funptr, double x)
{

return ((double (%) (double))funptr) (x);
}

Listing 3: Foreign function call in C

Dyncall C library example

The same operation can be broken down into atomic pieces (specify calling convention, binding
arguments, invoking the call) using the dyncall library.

#include <dyncall.h>
double call_as_sqrt(void* funptr, double x)
{
double r;
DCCallVM*x vm = dcNewCallVM (4096) ;
dcMode (vm, DC_CALL_C_DEFAULT);
dcArgDouble (vm, x);
r = dcCallDouble(vm, funptr);
dcFreeCallVM(vm) ;
return r;

Listing 4: Dyncall C library example

Python example

import pydc
def call_as_sqrt (funptr,x):
return pydc.call (funptr,"d)d", x)

Listing 5: Dyncall Python bindings example

R example

library (rdc)
call.as.sqrt <- function (funptr,x)
rdc.call (funptr,"d)d", x)

Listing 6: Dyncall R bindings example

2.3 Supported platforms/architectures

The feature matrix below gives a brief overview of the currently supported platforms. Different colors
are used, where a green cell indicates a supported platform, yellow a platform that might work (but
is untested) and red a platform that is currently unsupported. Gray cells are combinations that don't
exist at the time of writing, or that are not taken into account.

Please note that a green cell doesn't imply that all existing calling conventions/features/build tools
are supported for that platform (but the most important). For details about the support consult the
appendix.

g3

<

oI E % tg ¥

=23 F 353588

< S Ha o o L =200
Windows/Windows CE
Linux
Darwin
FreeBSD
NetBSD
OpenBSD
DragonFlyBSD

Solaris I

Playstation Portable
Nintendo DS

Table 1: Supported platforms

3 Building the library

The library has been built and used successfully on several platform/architecture configurations and
build systems. Please see notes on specfic platforms to check if the target architecture is currently
supported.

3.1 Requirements

The following tools are supported directly to build the dyncall library. However, as the number of
source files to be compiled for a given platform is small, it shouldn’t be difficult to build it manually
with another toolchain.

e C compiler to build the dyncall library (GCC or Microsoft C/C++ compiler)
e C++ compiler to build the optional test cases (GCC or Microsoft C/C++ compiler)
e Python (optional - for generation of some test cases)

e BSD make, GNU make, or Microsoft nmake as automated build tools

3.2 Supported/tested platforms and build systems

Although it is possible to build the dyncall library on more platforms than the ones outlined here,
this section doesn't list operating systems or architectures the authors didn't test. However, untested
platforms using the same build tools (e.g. the BSD family of operating systems using similar flavors of
the BSD make utility along with GCC, etc.) should work without modification. If you have problems
building the dyncall library on one of the platforms mentioned below, or if you successfully built it on
a yet unlisted one, please let us know.

10

x86

Windows nmake, GNU make (via MinGW)

Darwin GNU make, BSD make

Linux GNU make

Solaris GNU make (Sun’s make tool isn't supported)
FreeBSD BSD make

NetBSD BSD make

OpenBSD BSD make

DragonFlyBSD BSD make

x64

Windows nmake

Darwin GNU make, BSD make

Linux GNU make

Solaris GNU make (Sun’s make tool isn't supported)
FreeBSD BSD make

NetBSD BSD make

OpenBSD BSD make

PowerPC (32bit)

Darwin GNU make, BSD make

Linux GNU make

NetBSD BSD make

ARMOIE

Nintendo DS nmake (and devkitPro[12] tools)
MIPS32

Playstation Portable

GNU make (and psptoolchain[13] tools)

11

3.3 Build instructions

1. Configure the source

*nix flavour

[./configure [--option ...]

windows flavour

L.\configure [/option ...]

Available options:
prefix=path
prefix path
target-x86
target-x64
target-ppc32
target-psp
target-nds-arm
target-nds-thumb
tool-gcc
tool-msvc
asm-as
asm-nasm
asm-ml
config-release
config-debug

specify installation prefix (Unix shell)

specify installation prefix (Windows batch)

build for x86 architecture

build for x64 architecture

build for ppc 32-bit architecture (not on windows batch)
cross-compile build for Playstation Portable (homebrew SDK)
cross-compile build for Nintendo DS (using ARM mode)
cross-compile build for Nintendo DS (using THUMB mode)
use GNU Compiler Collection tool-chain

use Microsoft Visual C++

use the GNU Assembler

use NASM Assembler

use Microsoft Macro Assembler

build release version (default)

build debug version

2. Build the static libraries dyncall, dynload and dyncallback

make # when using {GNU,BSD} Make
bsdmake # when using BSD Make on Darwin
make -f BSDmakefile # when using BSD Make on NetBSD
nmake /f Nmakefile # when using NMake on Windows

3. Install libraries and includes (not supported for nmake based builds)

[make install

4. Optionally, build the test suites

make test
bsdmake test

make -f BSDmakefile test
nmake /f Nmakefile test

when using {GNU,BSD} Make

when using BSD Make on Darwin
when using BSD Make on NetBSD
when using NMake on Windows

5. Optionally, build the manual (Latex required)

make doc
bsdmake doc

make -f BSDmakefile doc
nmake /f Nmakefile doc

when using {GNU,BSD} Make
when using BSD Make on Darwin
when using BSD Make on NetBSD
when using NMake on Windows

H H H

12

4 Bindings to programming languages

Through binding of the dyncall library into a scripting environment, the scripting language can gain
system programming status to a certain degree.

The dyncall library provides bindings to Java[l], Lua[2], Python[3], R[4] and Ruby[5].

However, please note that some of these bindings are work-in-progress and not automatically tested,
meaning it might require some additional work to make them work.

4.1 Common Architecture

The binding interface of the dyncall library to various scripting languages share a common set of
functionality to invoke a function call.

4.1.1 Dynamic loading of code

The helper library dynload which accompanies the dyncall library provides an abstract interface to
operating-system specific mechanisms for loading a code module.

4.1.2 Functions

All bindings are based on a common interface convention providing a common set of the following 4
functions:

load loading a module of compiled code
free unloading a module of compiled code
find finding function pointer by symbolic names

call invoking a function call

13

4.1.3 Signatures

A signature is a character string that represents a function’s arguments and return value types. It is
used in the scripting language bindings invoke functions to perform automatic type-conversion of the
languages’ types to the low-level C/C++ data types. The high-level C interface functions dcCallF ()
and dcCallFV() also make use of the dyncall signature string.

The format of a dyncall signature string is as depicted below:

dyncall signature string format

<input parameter type signature character>* ')’ <return type signature character>

The <input parameter type signature character> sequence left to the ')’ is in left-to-right order of
the corresponding C function parameter type list.
The special <return type signature character> 'v' specifies that the function does not return a value
and corresponds to void functions in C.

Signature character C/C++ data type
_Bool,bool

char

unsigned char

short

unsigned short

int

unsigned int

long

unsigned long

long long,int64_t

unsigned long long, uint64_t
float

double

void*

const char* (pointing to C string)
void

<N"DamHEHOGWHM B QO W

Table 2: Type signature encoding for function call data types

While the size and encoding scheme (integer, float or double) is an important property for the dyncall
library to establish the function in a correct way, the distinction between signed and unsigned integer
data types (char, short, int, long, long long) in C is not of importance for the library itself. as
these types share the same machine storage semantics in regard to register usage, size and alignment.

On a higher level, such as in the binding of a scripting environment, it is vital to have a correct
conversion between different storage schemas among scripting languages. Therefore we define also the
unsigned/signed variants for a later use in the language binding part.

14

Examples of C function prototypes

C function prototype dyncall signature
void f1(); ")V
int f2(int, int); "ii)i"
long long f3(void*); "p)L"
double f4(int, bool, char, double, const char*); "iBcdZ)d"

Table 3: Type signature examples of C function prototypes

4.2 Python language bindings

The python module pydc implements the Python language bindings, namely load, find, free, call.

Signature character accepted Python data types
bool

if string, take first item

int, check in range

int

int

long, casted to long long
float

double

string or long casted to void*
no return type

<™ ek HOl 0 o W

Table 4: Type signature encoding for Python bindings

4.3 R language bindings

The R package rdyncall implements the R langugae bindings providing the function .dyncall() .
Some notes on the R Binding:

e Unsigned 32-bit integers are represented as signed integers in R.

e 64-bit integer types do not exist in R, therefore we use double floats to represent 64-bit integers
(using only the 52-bit mantissa part).

15

Signature character accepted R data types

< NOD amtbtHOoWwHMrn?n Qo W

coerced to logical vector, first item

coerced to integer vector, first
coerced to integer vector, first
coerced to integer vector, first
coerced to integer vector, first
coerced to integer vector, first
coerced to integer vector, first
coerced to integer vector, first
coerced to integer vector, first

item
item
item
item
item
item
item
item

truncated char

truncated to unsigned char
truncated to short
truncated to unsigned short

casted to unsigned int

casted to unsigned long

coerced to numeric, first item casted to long long
coerced to numeric, first item casted to unsigned long long
coerced to numeric, first item casted to float

coerced to numeric, first item

external pointer or coerced to string vector, first item
coerced to string vector, first item

no return type

Table 5: Type signature encoding for R bindings

4.4 Ruby language bindings

The Ruby gem rbdc implements the Ruby language bindings.

Signature character accepted Ruby data types

<o M HO R oW

TrueClass, FalseClass, NilCalss, Fixnum casted to bool

Fixnum cast to char
Fixnum cast to short
Fixnum cast to int
Fixnum cast to long
Fixnum cast to long long
Float cast to float

Float cast to double
String cast to void*

no return type

Table 6: Type signature encoding for Ruby bindings

16

5 Library Design

5.1 Design considerations

The dyncall library encapsulates function call invocation semantics that can depend on the compiler,
operating system and architecture. The core library is driven by a function call invocation engine,
namely the CallVM, that encapsulates a call stack to foreign functions and manages the following
three phases that constitute a dyncall function call:

1. Specify the calling convention. Some run-time platforms, such as Microsoft Windows on a 32-bit
X86 architecture, even support multiple calling conventions.

2. Specify the function call arguments in a specific order. The interface design dictates a left to
right order for C and C++ function calls in which the arguments are bounded.

3. Specify the target function address, expected return value and invoke the function call.

The calling convention mode entirely depends on the way the foreign function has been compiled
and specifies the low-level details on how a function actually expects input parameters (in memory, in
registers or both) and how to return results.

17

6 Developers

6.1 Project root

configure -- configuration tool (unix-shell)
configure.bat -- configuration tool (windows batch)
ConfigVars -- configuration tool output
BSDmakefile -- BSD makefile

GNUmakefile -- GNU makefile

Nmakefile -- MS nmake makefile

LICENSE -- license information

README. txt -- general information

buildsys/ -- build systems ({BSD,GNU,N}make)
doc/ -- manual

dyncall/ —-- dyncall library source code
dyncallback/ -- dyncallback library source code
dynload/ -- dynload library source code
test/ -- test suites

6.2 Test suites

plain Identity function calls for all supported return types and calling conventions, plus this C++ calls
(GNU and MS).

suite All combinations of parameter types and counts are tested on void function calls. A script written
in Python (mkcase.py) generates the tests up to an upper MAXARG limit.

suite_x86win32std All combinations of parameter types and counts are tested on __stdcall void
function calls. A script written in Python (mkcase.py) generates the tests up to an upper
MAXARG limit. This is a x86/Windows only test.

suite_x86win32fast All combinations of parameter types and counts are tested on __fastcall (MS or
GNU, depending on the build tool) void function calls. A script written in Python (mkcase.py)
generates the tests up to an upper MAXARG limit. This is a x86/Windows only test.

ellipsis All combinations of parameter types and counts are tested on void ellipsis function calls. A
script written in Python (mkcase.py) generates the tests up to an upper MAXARG limit.

suite2 Designed mass test suite for void function calls. Tests individual void functions with a varying
count of arguments and type.

suite2_win32std Designed mass test suite for __stdcall void function calls. Tests individual void
functions with a varying count of arguments and type. This is a x86/Windows only test.

suite2_win32fast Designed mass test suite for __fastcall (MS or GNU, depending on the build tool)
void function calls. Tests individual void functions with a varying count of arguments and type.
This is a x86/Windows only test.

suite3 All combinations of parameter types integer, long long, float and double and counts are tested
on void function calls. A script written in Python (mkcase.py) generates the tests up to an
upper MAXARG limit. This is a modified version of suite.

callf Tests the formatted call dyncall C API.
malloc_wx Tests writable and executable memory allocation used by the dyncallback C API.

thunk Tests callbacks for the dyncallback C API.

18

7 Epilog

7.1 Stability and security considerations

Since the dyncall library doesn't know anything about the called function itself (except its address),
no parameter-type validation is done. Thus in order to avoid crashes, data corruption, etc., the user
is urged to ascertain the number and types of parameters. It is strongly advised to double check the
parameter types of every function to be called, and not to call unknown functions at all.

Consider a simple program that issues a call by directly passing some command line arguments to

the call itself, or even worse, by indirectly choosing a library and a function to call. Such unchecked
input data can be quite easily used to intentionally crash the program , or to hijack it and take control
of the program flow.
To put it in a nutshell, if not used with care, programs depending on the dyncall, dyncallback and
dynload libraries, can become arbitrary function call dispatchers by manipulating their input data.
Successful exploits of programs like the one outlined above can be misused as very powerful tools for
a wide variety of malicious attacks, ...

7.2 Embedding

The dyncall library has a very low dependency to system facilities. The library uses some heap-memory
to store the Call VM and uses per default malloc() and free() calls. This behaviour can be changed
by providing custom dcAllocMem() and dcFreeMem() functions. See dyncall/dyncall_alloc.h
for details.

7.3 Multi-threading

The dyncall library is thread-safe and reentrant, by means that it works correctly during execution
of multiple threads if, and only if there is at most a single thread pushing arguments to a CallVM
(invoking the call is always thread-safe, though). However, since there's no limitation on the number
of created CallVM objects, it is advised to keep a copy for each thread.

7.4 Supported types

Currently, the dyncall library supports all of ANSI C’s integer, floating point and pointer types as
function call arguments as well as return values. Additionally, C++'s bool type is supported. Due to
the still rare and often incomplete support of the long double type on various platforms, the latter
is currently not supported.

7.5 Roadmap

The dyncall library should be extended by a wide variety of other calling conventions and ported to
other, more esoteric platforms. With its low memory footprint it surely might come in handy on
embedded systems. So far dyncall supports arm9e and mips32 (eabi) embedded systems processors.
Furthermore, the authors plan to write some more scripting language bindings, examples, and other
projects that are based on it.

Besides dyncall and dyncallback, the dynload library needs to be extended with .dylib, .so and other
shared library format support (e.g. AmigaOS .library or GEM [14] files).

7.6 Related libraries

Besides the dyncall library, there are other free and open projects with similar goals. The most
noteworthy libraries are libffi [15], libffcall [16] and C/Invoke [17].

19

A Dyncall C library API

The library provides low-level functionality to make foreign function calls from different run-time envi-
ronments. The flexibility is constrained by the set of supported types.
C interface style conventions

This manual and the dyncall library's C interface "dyncall.h" uses the following C source code
style.

Subject C symbol Details Example

Types DC<type name> lower-case DCint, DCfloat, DClong, ...
Structures DC<structure name> camel-case DCCallVM

Functions dc<function name> camel-case dcNewCallVVM, dcArglInt, ...

Table 7: C interface conventions

A.1 Supported C/C++ argument and return types

Type alias C/C++ data type

DCbool _Bool, bool
DCchar char
DCshort short
DCint int

DClong long
DClonglong long long
DCfloat float

DCdouble double
DCpointer void*
DCvoid void

Table 8: Supported C/C++ argument and return types

20

A.2 Call Virtual Machine - CallVM

This CallVM is the main entry to the functionality of the library.

Types

Ltypedef void DCCallVM; /* abstract handle */ J

Details

The CallVM is a state machine that manages all aspects of a function call from configuration,
argument passing up the actual function call on the processor.

A.3 Allocation

Functions
DCCallVM* dcNewCallVM (DCsize size);
void dcFreeCallVM(DCCallVM* vm);

dcNewCallVM creates a new CallVM object, where size specifies the size of the internal stack
that will be allocated and used to bind the arguments to. Use dcFreeCallVM to destroy the CallVM
object.

A.4 Configuration

Function

[void dcMode (DCCallVM* vm, DCint mode); J

Sets the calling convention to use. Note that some mode/platform combination don’t make any
sense (e.g. using a PowerPC calling convention on a MIPS platform).

Modes

Details

DC_CALL_C_DEFAULT is the default standard C call on the target platform. It uses the standard C
calling convention and will also be used for variable argument ellipsis calls. On most platforms, there
is only one C calling convention. Only the X86 platform provides a rich family of different calling
conventions.

A.5 Machine state reset

Lvoid dcReset (DCCallVM* vm) ; J

Resets the internal stack of arguments. This function should be called prior to binding new argu-
ments to the CallVM, because arguments don't get flushed automatically after a foreign function call
invocation.

21

Constant

Description

DC_CALL_C_DEFAULT
DC_CALL_C_X86_CDECL
DC_CALL_C_X86_WIN32_STD
DC_CALL_C_X86_WIN32_FAST_MS
DC_CALL_C_X86_WIN32_FAST_GNU
DC_CALL_C_X86_WIN32_THIS_MS
DC_CALL_C_X86_WIN32_THIS_GNU
DC_CALL_C_X64_WIN64
DC_CALL_C_X64_SYSV
DC_CALL_C_PPC32_DARWIN
DC_CALL_C_ARM_ARM
DC_CALL_C_ARM_THUMB
DC_CALL_C_MIPS32_EABI
DC_CALL_C_MIPS32_PSPSDK

C default function call

C x86 platforms standard call

C x86 Windows standard call

C x86 Windows Microsoft fast call
C x86 Windows GCC fast call

C x86 Windows Microsoft this call
C x86 Windows GCC this call

C x64 Windows standard call

C x64 System V standard call

C ppc32 Mac OS X standard call
C arm call (arm mode)

C arm call (thumb mode)

C mips32 eabi call

C mips32 default PSP Homebrew SDK call (uses eabi)

Table 9: CallVM calling convention modes

A.6 Argument binding

Functions

void dcArgBool (DCCallVM* vm, DCbool arg) ;
void dcArgChar (DCCallVM#* vm, DCchar arg) ;
void dcArgShort (DCCallVM* vm, DCshort arg) ;
void dcArglnt (DCCallVM* vm, DCint arg) ;
void dcArglong (DCCallVM* vm, DClong arg);
void dcArglongLong (DCCallVM#* vm, DClonglong arg);
void dcArgFloat (DCCallVM#* vm, DCfloat arg) ;
void dcArgDouble (DCCallVM#* vm, DCdouble arg) ;
void dcArgPointer (DCCallVM#* wvm, DCpointer arg);

Details

Used to bind arguments of the named types to the CallVM object. Arguments should be bound in
left-to-right order regarding the C function prototype.

A.7 Call invocation

Functions

DCvoid dcCallVoid (DCCallVM#* vm, DCpointer funcptr);)
DCbool dcCallBool (DCCallVM#* vm, DCpointer funcptr);

DCchar dcCallChar (DCCallVM#* vm, DCpointer funcptr);

DCshort dcCallShort (DCCallVM* vm, DCpointer funcptr);

DCint dcCallInt (DCCallVM* vm, DCpointer funcptr);

DClong dcCalllong (DCCallVM* vm, DCpointer funcptr);
DClonglong dcCalllLonglong (DCCallVM* vm, DCpointer funcptr);

DCfloat dcCallFloat (DCCallVM#* vm, DCpointer funcptr);

22

DCdouble dcCallDouble (DCCallVM* wvm, DCpointer funcptr);
DCpointer dcCallPointer (DCCallVM* vm, DCpointer funcptr);

Details

After the invocation of the foreign function call, the argument values are still bound and a second
call using the same arguments can be issued. If you need to clear the argument bindings, you have to
reset the CallVM.

23

A.8 Formatted calls (ANSI C ellipsis interface)

Functions

void dcCallF (DCCallVM* vm, DCValue* result, DCpointer funcptr,
const DCsigchar* signature, ...);

void dcVCallF(DCCallVM* vm, DCValue* result, DCpointer funcptr,
const DCsigchar* signature, va_list args);

Details

These functions can be used to issue a printf-style function call, using a signature string encoding
the argument types and return type. The return value will be stored in result. For more information
about the signature format, refer to E}

24

B Dynload C library API

The dynload library encapsulates dynamic loading mechanisms and gives access to functions in foreign
dynamic libraries and code modules.

B.1 Loading code

void* dlLoadLibrary(const char* libpath);
void dlFreelibrary(void* libhandle);

B.2 Retrieving functions

[void* dlFindSymbol (void* libhandle, const char* symbol);

25

C Calling Conventions

Before we go any further. ..

It is of great importance to be aware that this section isn't a general purpose description of the
present calling conventions. It merely explains the calling conventions for the parameter/return
types supported by dyncall, not for aggregates (structures, unions and classes), SIMD data types
(.-m64, __m128, __m128i, __m128d), etc.

We strongly advise the reader not to use this document as a general purpose calling convention
reference.

C.1 x86 Calling Conventions

Overview

There are numerous different calling conventions on the x86 processor architecture, like cdecl, MS
fastcall, GNU fastcall, Borland fastcall, Watcom fastcall, Win32 stdcall, MS thiscall, GNU thiscall and
the pascal calling convention, etc.

dyncall support
Currently cdecl, stdcall, fastcall (MS and GNU) and thiscall (MS and GNU) are supported.

C.1.1 cdecl

Registers and register usage

Name Brief description

eax scratch, return value

ebx permanent

ecx scratch

edx scratch, return value

esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 10: Register usage on x86 cdecl calling convention

Parameter passing

e stack parameter order: right-to-left
e caller cleans up the stack
e all parameters are pushed onto the stack

e stack is usually 4 byte aligned (GCC >= 3.x seems to use a 16byte alignement - this is required
on darwin/i386 platforms)

26

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers

e floating point types are returned via the st0 register

Stack layout
Stack directly after function prolog:

local data

parameter area . stack parameters caller's frame

return address

local data
parameter area current frame

Figure 1: Stack layout on x86 cdecl calling convention

C.1.2 MS fastcall

Registers and register usage

Name Brief description

eax scratch, return value

ebx permanent

ecx scratch, parameter 0

edx scratch, parameter 1, return value
esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 11: Register usage on x86 fastcall (MS) calling convention

27

Parameter passing

stack parameter order: right-to-left
e called function cleans up the stack

e first two integers/pointers (<= 32bit) are passed via ecx and edx (even if preceded by other
arguments)

e integer types 64 bits in size @@@ ? first in edx:eax ?
o if first argument is a 64 bit integer, it is passed via ecx and edx

e all other parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers@Q@Qverify

e floating point types are returned via the st0 register@Q@ really 7

Stack layout

Stack directly after function prolog:

local data
parameter area . stack parameters caller’s frame
return address
local data
parameter area current frame

Figure 2: Stack layout on x86 fastcall (MS) calling convention

28

C.1.3 GNU fastcall

Registers and register usage

Name Brief description

eax scratch, return value

ebx permanent

ecx scratch, parameter 0

edx scratch, parameter 1, return value
esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 12: Register usage on x86 fastcall (GNU) calling convention

Parameter passing

e stack parameter order: right-to-left
e called function cleans up the stack

e first two integers/pointers (<= 32bit) are passed via ecx and edx (even if preceded by other
arguments)

e if first argument is a 64 bit integer, it is pushed on the stack and the two registers are skipped

e all other parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register.
e integers > 32 bits are returned via the eax and edx registers.

e floating point types are returned via the st0.

29

Stack layout

Stack directly after function prolog:

local data
parameter area o stack parameters caller's frame
return address
local data
parameter area current frame

Figure 3: Stack layout on x86 fastcall (GNU) calling convention

C.1.4 Borland fastcall

Registers and register usage

Name Brief description

eax scratch, parameter 0, return value
ebx permanent

ecx scratch, parameter 2

edx scratch, parameter 1, return value
esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 13: Register usage on x86 fastcall (Borland) calling convention

Parameter passing

e stack parameter order: left-to-right
e called function cleans up the stack

e first three integers/pointers (<= 32bit) are passed via eax, ecx and edx (even if preceded by
other arguments@@Q@7)

e integer types 64 bits in size ©0Q ?

e all other parameters are pushed onto the stack

30

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registersQQQ verify

e floating point types are returned via the st register@QQ@ really ?

Stack layout

Stack directly after function prolog:

local data

parameter area . stack parameters caller's frame

return address

local data
parameter area current frame

Figure 4: Stack layout on x86 fastcall (Borland) calling convention

C.1.5 Watcom fastcall

Registers and register usage

Name Brief description

eax scratch, parameter 0, return value@@@

ebx scratch when used for parameter, parameter 2

ecx scratch when used for parameter, parameter 3

edx scratch when used for parameter, parameter 1, return value@Q@@
esi scratch when used for return pointer @@@Q@77

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 14: Register usage on x86 fastcall (Watcom) calling convention

Parameter passing

e stack parameter order: right-to-left

e called function cleans up the stack

31

e first four integers/pointers (<= 32bit) are passed via eax, edx, ebx and ecx (even if preceded by
other arguments@@Q@?)

e integer types 64 bits in size ©@0Q ?

e all other parameters are pushed onto the stack

Return values
e return values of pointer or integral type (<= 32 bits) are returned via the eax register@QQuverify,
| thnik its esi?
e integers > 32 bits are returned via the eax and edx registers@Q@@ verify

e floating point types are returned via the st0 register@QQ@ really ?

Stack layout
Stack directly after function prolog:

local data
rameter ar rameter '
arameter area stack parameters caller's frame
return address
local data
parameter area current frame

Figure 5: Stack layout on x86 fastcall (Watcom) calling convention

C.1.6 win32 stdcall

Registers and register usage

Name Brief description

eax scratch, return value

ebx permanent

ecx scratch

edx scratch, return value

esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 15: Register usage on x86 stdcall calling convention

32

Parameter passing

Stack parameter order: right-to-left

Called function cleans up the stack

All parameters are pushed onto the stack

Stack is usually 4 byte aligned (GCC >= 3.x seems to use a 16byte alignement@@Q)

Function name is decorated by prepending an underscore character and appending a '@’ character
and the number of bytes of stack space required

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers

e floating point types are returned via the stO register

Stack layout

Stack directly after function prolog:

local data
parameter area e stack parameters caller’'s frame
return address
local data
parameter area current frame

Figure 6: Stack layout on x86 stdcall calling convention

C.1.7 MS thiscall

Registers and register usage

33

Name Brief description

eax scratch, return value

ebx permanent

ecx scratch, parameter 0

edx scratch, return value

esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 16: Register usage on x86 thiscall (MS) calling convention

Parameter passing

e stack parameter order: right-to-left
e called function cleans up the stack
e first parameter (this pointer) is passed via ecx
e all other parameters are pushed onto the stack

e Function name is decorated by prepending a '@ character and appending a '@’ character and
the number of bytes (decimal) of stack space required

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers@Q@Qverify

o floating point types are returned via the stO register@Q@ really 7

Stack layout

Stack directly after function prolog:

local data
parameter area .. stack parameters caller’s frame
return address
local data
parameter area current frame

Figure 7: Stack layout on x86 thiscall (MS) calling convention

34

C.1.8 GNU thiscall

Registers and register usage

Name Brief description

eax scratch, return value

ebx permanent

ecx scratch

edx scratch, return value

esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 17: Register usage on x86 thiscall (GNU) calling convention

Parameter passing

e stack parameter order: right-to-left
e caller cleans up the stack

e all parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers@Q@Qverify

e floating point types are returned via the st0 register@QQ@ really ?

Stack layout

Stack directly after function prolog:

local data
parameter area .. stack parameters caller's frame
return address
local data
parameter area current frame

Figure 8: Stack layout on x86 thiscall (GNU) calling convention

35

C.1.9 pascal

The best known uses of the pascal calling convention are the 16 bit OS/2 APIs, Microsoft Windows
3.x and Borland Delphi 1.x.

Registers and register usage

Name Brief description

eax scratch, return value

ebx permanent

ecx scratch

edx scratch, return value

esi permanent

edi permanent

ebp permanent

esp stack pointer

st0 scratch, floating point return value

stl-st7 scratch

Table 18: Register usage on x86 pascal calling convention

Parameter passing

e stack parameter order: left-to-right
e called function cleans up the stack

e all parameters are pushed onto the stack

Return values

e return values of pointer or integral type (<= 32 bits) are returned via the eax register
e integers > 32 bits are returned via the eax and edx registers

e floating point types are returned via the st0 register

Stack layout
Stack directly after function prolog:

36

local data

parameter area e stack parameters caller’s frame

return address

local data
parameter area current frame

Figure 9: Stack layout on x86 pascal calling convention
C.2 x64 Calling Convention

Overview

The x64 (64bit) architecture designed by AMD is based on Intel's x86 (32bit) architecture, support-

ing it natively. It is sometimes referred to as x86-64, AMDG64, or, cloned by Intel, EM64T or Intel64.
On this processor, a word is defined to be 16 bits in size, a dword 32 bits and a qword 64 bits. Note
that this is due to historical reasons (terminology didn't change with the introduction of 32 and 64 bit
processors).
The x64 calling convention for MS Windows [7] differs from the SystemV x64 calling convention [8]
used by Linux/*BSD/... Note that this is not the only difference between these operating systems.
The 64 bit programming model in use by 64 bit windows is LLP64, meaning that the C types int and
long remain 32 bits in size, whereas long long becomes 64 bits. Under Linux/*BSD/... it's LP64.

Compared to the x86 architecture, the 64 bit versions of the registers are called rax, rbx, etc.. Further-
more, there are eight new general purpose registers r8-r15.

dyncall support

dyncall supports the MS Windows and System V calling convention.

C.2.1 MS Windows
Registers and register usage

Parameter passing

stack parameter order: right-to-left
e caller cleans up the stack

e first 4 integer/pointer parameters are passed via rcx, rdx, r8, r9 (from left to right), others are
pushed on stack (there is a preserve area for the first 4)

e float and double parameters are passed via xmmOl-xmm3|

e first 4 parameters are passed via the correct register depending on the parameter type - with
mixed float and int parameters, some registers are left out (e.g. first parameter ends up in rcx
or xmmO0, second in rdx or xmm1, etc.)

37

Name Brief description

rax scratch, return value

rbx permanent

rcx scratch, parameter 0 if integer or pointer

rdx scratch, parameter 1 if integer or pointer

rdi permanent

rsi permanent

rbp permanent, may be used ase frame pointer

rsp stack pointer

r8-r9 scratch, parameter 2 and 3 if integer or pointer

r10-r11 scratch, permanent if required by caller (used for syscall/sysret)
r12-r15 permanent

xmm0 scratch, floating point parameter 0, floating point return value

xmml-xmm3 scratch, floating point parameters 1-3
xmmé4-xmmb5 scratch, permanent if required by caller
xmm6-xmm15 permanent

Table 19: Register usage on x64 MS Windows platform

e parameters in registers are right justified

e parameters < 64bits are not zero extended - zero the upper bits contiaining garbage if needed
(but they are always passed as a qword)

e parameters > 64 bit are passed by reference

o if callee takes address of a parameter, first 4 parameters must be dumped (to the reserved space
on the stack) - for floating point parameters, value must be stored in integer AND floating point
register

e caller cleans up the stack, not the callee (like cdecl)

e stack is always 16byte aligned - since return address is 64 bits in size, stacks with an odd number
of parameters are already aligned

o ellipse calls take floating point values in int and float registers (single precision floats are promoted
to double precision as defined for ellipse calls)

e if size of parameters > 1 page of memory (usually between 4k and 64k), chkstk must be called
Return values

e return values of pointer or integral type (<= 64 bits) are returned via the rax register
e floating point types are returned via the xmmO register

e for types > 64 bits, a secret first parameter with an address to the return value is passed

Stack layout
Stack frame is always 16-byte aligned. Stack directly after function prolog:

38

local data

stack parameters

parameter area r9 or xmm3 caller’s frame
r8 or xmm?2
rdx or xmml1
rcx or xmmQ
return address

spill area

local data
parameter area current frame

Figure 10: Stack layout on x64 Microsoft platform

C.2.2 System V (Linux / *BSD / MacOS X)

Registers and register usage

Name Brief description

rax scratch, return value

rbx permanent

rcx scratch, parameter 3 if integer or pointer

rdx scratch, parameter 2 if integer or pointer, return value
rdi scratch, parameter 0 if integer or pointer

rsi scratch, parameter 1 if integer or pointer

rbp permanent, may be used ase frame pointer

rsp stack pointer

r8-r9 scratch, parameter 4 and 5 if integer or pointer
r10-r11 scratch

r12-r15 permanent

xmm0 scratch, floating point parameters 0, floating point return value

xmml-xmm7 scratch, floating point parameters 1-7
xmm8-xmm15 scratch

st0-stl scratch, 16 byte floating point return value
st2-st7 scratch

Table 20: Register usage on x64 System V (Linux/*BSD)

Parameter passing

e stack parameter order: right-to-left

caller cleans up the stack

first 6 integer/pointer parameters are passed via rdi, rsi, rdx, rex, r8, r9

first 8 floating point parameters <= 64 bits are passed via xmmOl-xmm?7|

parameters in registers are right justified

39

e parameters that are not passed via registers are pushed onto the stack

e parameters < 64bits are not zero extended - zero the upper bits contiaining garbage if needed
(but they are always passed as a qword)

e integer/pointer parameters > 64 bit are passed via 2 registers

o if callee takes address of a parameter, number of used xmm registers is passed silently in al
(passed number mustn't be exact but an upper bound on the number of used xmm registers)

e stack is always 16byte aligned - since return address is 64 bits in size, stacks with an odd number
of parameters are already aligned

Return values

return values of pointer or integral type (<= 64 bits) are returned via the rax register

floating point types are returned via the xmmO register

for types > 64 bits, a secret first parameter with an address to the return value is passed - the
passed in address will be returned in rax

floating point values > 64 bits are returned via st0 and stl

Stack layout

Stack frame is always 16-byte aligned. Note that there is no spill area. Stack directly after function
prolog:

local data

parameter area e stack parameters caller’s frame

return address

local data
parameter area current frame

Figure 11: Stack layout on x64 System V (Linux/*BSD)

40

C.3 PowerPC (32bit) Calling Convention

Overview

o Word size is 32 bits

e Big endian (MSB) and litte endian (LSB) operating modes.

e Processor operates on floats in double precision floating point arithmetc (IEEE-754) values di-
rectly (single precision is converted on the fly)

e Apple Mac OS X/Darwin PPC is specified in "Mac OS X ABI Function Call Guide”. It uses Big
Endian (MSB).

e Linux PPC 32-bit ABI is specified in "LSB for PPC 2.1" which is based on ”System V ABI". It
uses Big Endian (MSB).

e Ellipse calls do not work on Linux/System V PPC ABI currently.

dyncall support

Dyncall supports PowerPC (32bit) Big Endian (MSB) on Darwin (tested on Apple Mac OS X) and
System V ABI systems (Linux, NetBSD, etc.).

C.3.1 Mac OS X/Darwin

Registers and register usage

Name Brief description

gpr0 scratch

gprl stack pointer

gpr2 scratch

gpr3 return value, parameter 0 if integer or pointer
gprd-gprl0 return value, parameter 1-7 for integer or pointer parameters
gprll permanent

gprl2 branch target for dynamic code generation
gpr13-31 permanent

fpr0 scratch

fprl-fprl3 parameter 0-12 for floating point (always double precision)
fpr14-fpr31 permanent

v0-v1 scratch

v2-v13 vector parameters

v14-v19 scratch

v20-v31 permanent

Ir scratch, link-register

ctr scratch, count-register

cr0-crl scratch

cr2-crd permanent

crb-cr7 scratch

Table 21: Register usage on Darwin PowerPC 32-Bit

Parameter passing

41

stack parameter order: right-to-left@@@7

caller cleans up the stack@@@?

the first 8 integer parameters are passed in registers gpr3-gprl0

the first 12 floating point parameters are passed in registers fprl-fprl3

if a float parameter is passed via a register, gpr registers are skipped for subsequent integer
parameters (based on the size of the float - 1 register for single precision and 2 for double
precision floating point values)

the caller pushes subsequent parameters onto the stack

for every parameter passed via a register, space is reserved in the stack parameter area (in order
to spill the parameters if needed - e.g. varargs)

ellipse calls take floating point values in int and float registers (single precision floats are promoted
to double precision as defined for ellipse calls)

all nonvector parameters are aligned on 4-byte boundaries
vector parameters are aligned on 16-byte boundaries
integer parameters < 32 bit occupy high-order bytes of their 4-byte area

composite parameters with size of 1 or 2 bytes occupy low-order bytes of their 4-byte area.
INCONSISTENT with other 32-bit PPC binary interfaces. In AIX and OS 9, padding bytes
always follow the data structure

composite parameters 3 bytes or larger in size occupy high-order bytes

Return values

return values of integer <= 32bit or pointer type use gpr3

64 bit integers use gpr3 and gpr4 (hiword in gpr3, loword in gpr4)
floating point values are returned via fprl

structures <= 64 bits use gpr3 and gpré

for types > 64 bits, a secret first parameter with an address to the return value is passed

42

Stack layout

Stack frame is always 16-byte aligned. Stack directly after function prolog:

local data

stack parameters
parameter area

spill area (as needed)

gpr3 or fprl caller’'s frame
reserved
reserved
link reserved
inkage area return address
reserved for callee
saved by callee
local data
parameter area current frame
linkage area

Figure 12: Stack layout on ppc32 Darwin

C.3.2 System V PPC 32-bit

Status

e Ellipse calls do not work.

o C++ this calls do not work.

Registers and register usage

Parameter passing

e Stack pointer (rl) is always 16-byte aligned.
e 8 general-purpose registers (r3-r10) for integer and pointer types.
e 8 floating-pointer registers (f1-f8) for float (promoted to double) and double types.

e Additional arguments are passed on the stack directly after the back-chain and saved return
address (8 bytes structure) on the callers stack frame.

e 64-bit integer data types are passed in general-purpose registers as a whole in two 32-bit general
purpose registers (an odd and an even e.g. r3 and r4), probably skipping an even integer register.
or passed on the stack. They are never splitted into a register and stack part.

e Ellipse calls set CR bit 6

43

Name Brief description

r0 scratch

rl stack pointer

r2 system-reserved

r3-rd parameter passing and return value

r5-r10 parameter passing
r11-r12 scratch

r13 Small data area pointer register

r14-r30 Local variables

r31 Used for local variables or environment pointer
fo scratch

f1 parameter passing and return value

f2-f8 parameter passing

f9-13 scratch

f14-f31 Local variables

cr0-cr7 Conditional register fields, each 4-bit wide (cr0-crl and cr5-cr7 are scratch)
Ir Link register (scratch)

ctr Count register (scratch)
xer Fixed-point exception register (scratch)
fpscr Floating-point Status and Control Register

Table 22: Register usage on System V ABI PowerPC Processor

Return values

e 32-bit integers use register r3, 64-bit use registers r3 and r4 (hiword in r3, loword in r4).

e floating-point values are returned using register f1.

44

Stack layout

Stack frame is always 16-byte aligned. Stack directly after function prolog:

local data
parameter area . stack parameters)
caller’'s frame
saved return address (for callee)
parent stack frame pointer
local data
parameter area current frame

Figure 13: Stack layout on System V ABI for PowerPC 32-bit calling convention

45

C.4 ARMOIE Calling Convention

Overview

The ARMOE family of processors is based on the ARM processor architecture (32 bit RISC). The
word size is 32 bits (and the programming model is LLP64).
Basically, this family of microprocessors can be run in 2 major modes:

Mode Description

ARM 32bit instruction set
THUMB compressed instruction set using 16bit wide instruction encoding

Take a look at the ARM-THUMB procedure call standard (ATPCS) [6] for more details.

dyncall support

Currently, the dyncall library supports the ARM and THUMB mode of the ARM9E family, exclud-

ing ARM-THUMB interworking. Although it’s quite possible that the current implementation runs on
other ARM processor families as well, please note that only the ARM9E family has been thoroughly
tested at the time of writing. Please report if the code runs on other ARM families, too.
It is important to note, that dyncall supports the ARM architecture calling convention variant with
floating point hardware disabled (meaning that the FPA and the VFP (scalar mode) procedure call
standards are not supported). This processor family features some instruction sets accelerating DSP
and multimedia application like the ARM Jazelle Technology (direct Java bytecode execution, providing
acceleration for some bytecodes while calling software code for others), etc. that are not supported by
the dyncall library.

C.4.1 ARM mode

Registers and register usage

In ARM mode, the ARMOYE processor has sixteen 32 bit general purpose registers, namely r0-15:

Name Brief description

r0 parameter 0, scratch, return value
rl parameter 1, scratch, return value
r2-r3 parameters 2 and 3, scratch
r4-r10 permanent

rl1 frame pointer, permanent
r12 scratch

rl13 stack pointer, permanent
rl4 link register, permanent
rl5 program counter

Table 23: Register usage on arm9e

Parameter passing

e stack parameter order: right-to-left

e caller cleans up the stack

46

o first four words are passed using r0-r3

e subsequent parameters are pushed onto the stack (in right to left order, such that the stack
pointer points to the first of the remaining parameters)

e if the callee takes the address of one of the parameters and uses it to address other parameters
(e.g. varargs) it has to copy - in its prolog - the first four words to a reserved stack area adjacent
to the other parameters on the stack

e parameters <= 32 bits are passed as 32 bit words

e 64 bit parameters are passed as two 32 bit parts (even partly via the register and partly via the
stack - GCC needs them to be aligned on 8 byte boundaries, although this doesn't seem to be
specified in the ATPCS), with the loword coming first

e structures and unions are passed by value, with the first four words of the parameters in r0-r3

e if return value is a structure, a pointer pointing to the return value's space is passed in r0, the
first parameter in rl, etc... (see return values)

e keeping the stack eight-byte aligned can improve memory access performance and is required by
LDRD and STRD on ARMV5TE processors which are part of the ARM9E family, so, in order to
avoid problems one should always align the stack (tests have shown, that GCC does care about
the alignment when using the ellipsis)

Return values

e return values <= 32 bits use r0
e 64 bit return values use r0 and rl

e if return value is a structure, the caller allocates space for the return value on the stack in its
frame and passes a pointer to it in rQ

Stack layout

Stack directly after function prolog:

register save area

local data
caller’s frame
stack parameters
parameter area r3
r2 . .
1 spill area (if needed)
r0 current frame

register save area (with return address)
local data

parameter area

Figure 14: Stack layout on arm9e

47

C.4.2 THUMB mode

Status

Ellipse calls do not work.

C++ this calls do not work.

Registers and register usage

In THUMB mode, the ARMOE processor family supports eight 32 bit general purpose registers
r0-r7 and access to high order registers r8-r15:

Name Brief description

r0
rl

parameter 0, scratch, return value
parameter 1, scratch, return value

r2-r3 parameters 2 and 3, scratch
rd-r6 permanent

r7

frame pointer, permanent

r8-r11 permanent

r12
rl3
rl4
rl5

scratch

stack pointer, permanent
link register, permanent
program counter

Table 24: Register usage on arm9e thumb mode

Parameter passing

stack parameter order: right-to-left
caller cleans up the stack
first four words are passed using r0-r3

subsequent parameters are pushed onto the stack (in right to left order, such that the stack
pointer points to the first of the remaining parameters)

if the callee takes the address of one of the parameters and uses it to address other parameters
(e.g. varargs) it has to copy - in its prolog - the first four words to a reserved stack area adjacent
to the other parameters on the stack

parameters <= 32 bits are passed as 32 bit words

64 bit parameters are passed as two 32 bit parts (even partly via the register and partly via the
stack - GCC needs them to be aligned on 8 byte boundaries, although this doesn't seem to be
specified in the ATPCS), with the loword coming first

structures and unions are passed by value, with the first four words of the parameters in r0-r3

if return value is a structure, a pointer pointing to the return value's space is passed in r0, the
first parameter in rl, etc. (see return values)

48

e keeping the stack eight-byte aligned can improve memory access performance and is required by
LDRD and STRD on ARMV5TE processors which are part of the ARMOE family, so, in order to
avoid problems one should always align the stack (tests have shown, that GCC does care about
the alignment when using the ellipsis)

Return values

e return values <= 32 bits use r0
e 64 bit return values use r0 and rl

e if return value is a structure, the caller allocates space for the return value on the stack in its
frame and passes a pointer to it in rQ

Stack layout

Stack directly after function prolog:

register save area

local data
caller’s frame
stack parameters
parameter area 3
r2 . .
1 spill area (if needed)
r0 current frame

register save area (with return address)
local data

parameter area

Figure 15: Stack layout on arm9e thumb mode

49

C.5 MIPS Calling Convention

Overview

The MIPS family of processors is based on the MIPS processor architecture. Multiple revisions of
the MIPS Instruction sets, namely MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS32 and MIPS64. Today,
MIPS32 and MIPS64 for 32-bit and 64-bit respectively.

Several add-on extensions exist for the MIPS family:

MIPS-3D simple floating-point SIMD instructions dedicated to common 3D tasks.
MDMX (MaDMaX) more extensive integer SIMD instruction set using 64 bit floating-point registers.

MIPS16e adds compression to the instruction stream to make programs take up less room (allegedly
a response to the THUMB instruction set of the ARM architecture).

MIPS MT multithreading additions to the system similar to HyperThreading.

Unfortunately, there is actually no such thing as " The MIPS Calling Convention”. Many possible
conventions are used by many different environments such as 32, 064, N32, 64 and EABI.

dyncall support

Currently, dyncall supports the EABI calling convention which is used on the Homebrew SDK for the
Playstation Portable. As documentation for this EABI is unofficial, this port is currently experimental.

C.5.1 MIPS EABI 32-bit Calling Convention

Register usage

Name Alias Brief description

$0 $zero Hardware zero

$1 $at Assembler temporary
$2-$3 $v0-$vl Integer results
$4-511 $a0-$a7 Integer arguments
$12-$15,%$24,%$25 $t4-$t7,$8,99 Integer temporaries
$16-$23 $s0-$s7 Preserved

$26-$27 $kt0-$ktl Reserved for kernel
$28 $gp Global pointer

$29 $sp Stack pointer

$30 $s8 Frame pointer

$31 $ra Return address

hi, lo Multiply/divide special registers
$f0,$f2 Float results
$f1,$f3,$f4-$f11,$f20-$23 Float temporaries
$f12-$f19 Float arguments

Table 25: Register usage on mips32 eabi calling convention

Parameter passing

e Stack parameter order: right-to-left

e Caller cleans up the stack

50

e Stack always aligned to 8 bytes.

e first 8 integers and floats are passed independently in registers using $a0-$a7 and $f12-$f19,

respectively.

o if either integer or float registers are consumed up, the stack is used.

e 64-bit floats and integers are passed on two integer registers starting at an even register number,

probably skipping one odd register.

e $a0-%$a7 and $f12-$f19 are not required to be preserved.

e results are returned in $v0 (32-bit integer), $v0 and $v1 (64-bit integer/float), $f0 (32 bit float)
and $f0 and $f2 (2 x 32 bit float e.g. complex).

Stack layout

Stack directly after function prolog:

register save area
local data

parameter area

register save area (with return address)
local data
parameter area

Figure 16: Stack layout on

stack parameters

caller’'s frame

current frame

mips32 eabi calling convention

51

D Literature

References

[1] Java Programming Language
http://www.java.com/

[2] The Programming Language Lua
http://www.lua.org/

[3] Python Programming Language
http://www.python.org/

[4] The R Project for Statistical Computing
http://www.r-project.org/

[5] Ruby Programming Language
http://www.ruby-lang.org/

[6] ARM-THUMB Procedure Call Standard
http://tinyurl.com/2rxb3a

[7] MSDN: x64 Software Conventions
http://tinyurl.com/2k3tfw

[8] System V Application Binary Interface - AMDG64 Architecture Processor Supplement
http://tinyurl.com/2j5tex

[9] System V Application Binary Interface - SPARC Processor Supplement
http://www.sparc.com/standards/psABI3rd.pdf

[10] Introduction to Mac OS X ABI Function Call Guide
http://tinyurl.com/s7£85

[11] Linux Standard Base Core Specification for PPC32 3.2 - Chapter 8. Low Level System Information
http://tinyurl.com/9ttwcy

[12] devkitPro - homebrew game development
http://www.devkitpro.org/

[13] psptoolchain - all the homebrew related material ps2dev.org
http://ps2dev.org/psp/

[14] a GEM Dynamical Library system for TOS computer
http://1ldg.sourceforge.net/

[15] libffi - a portable foreign function interface library
http://sources.redhat.com/libffi/

[16] libffcall - foreign function call libraries
http://www.haible.de/bruno/packages-ffcall.html

[17] C/Invoke - library for connecting to C libraries at runtime
http://www.nongnu.org/cinvoke/

52

http://www.java.com/
http://www.lua.org/
http://www.python.org/
http://www.r-project.org/
http://www.ruby-lang.org/
http://tinyurl.com/2rxb3a
http://tinyurl.com/2k3tfw
http://tinyurl.com/2j5tex
http://www.sparc.com/standards/psABI3rd.pdf
http://tinyurl.com/s7f85
http://tinyurl.com/9ttwcy
http://www.devkitpro.org/
http://ps2dev.org/psp/
http://ldg.sourceforge.net/
http://sources.redhat.com/libffi/
http://www.haible.de/bruno/packages-ffcall.html
http://www.nongnu.org/cinvoke/

	Motivation
	Static function calls in C
	Anatomy of machine-level calls

	Overview
	Features
	Showcase
	Supported platforms/architectures

	Building the library
	Requirements
	Supported/tested platforms and build systems
	Build instructions

	Bindings to programming languages
	Common Architecture
	Dynamic loading of code
	Functions
	Signatures

	Python language bindings
	R language bindings
	Ruby language bindings

	Library Design
	Design considerations

	Developers
	Project root
	Test suites

	Epilog
	Stability and security considerations
	Embedding
	Multi-threading
	Supported types
	Roadmap
	Related libraries

	Dyncall C library API
	Supported C/C++ argument and return types
	Call Virtual Machine - CallVM
	Allocation
	Configuration
	Machine state reset
	Argument binding
	Call invocation
	Formatted calls (ANSI C ellipsis interface)

	Dynload C library API
	Loading code
	Retrieving functions

	Calling Conventions
	x86 Calling Conventions
	cdecl
	MS fastcall
	GNU fastcall
	Borland fastcall
	Watcom fastcall
	win32 stdcall
	MS thiscall
	GNU thiscall
	pascal

	x64 Calling Convention
	MS Windows
	System V (Linux / *BSD / MacOS X)

	PowerPC (32bit) Calling Convention
	Mac OS X/Darwin
	System V PPC 32-bit

	ARM9E Calling Convention
	ARM mode
	THUMB mode

	MIPS Calling Convention
	MIPS EABI 32-bit Calling Convention

	Literature

